Abstract

Adaptive equivalence has been demonstrated by Crawford for long-term dark adaptation; he showed that after the observer remained a certain time in the dark, increment thresholds equivalent to the absolute threshold were the same for all target diameters used and indicated that a single variable controls the spatial integration of light. Equivalence was investigated in the present study for early dark adaptation using two target diameters (0.25 and 0.96 deg) and four combinations of chromatic test and adapting stimuli (red on red, blue on blue, red on blue, and blue on red). In general, the results showed that adaptive states as produced by steady and transient conditions of adaptation do not appear to be equivalent during this early period of dark adaptation, and indicated that more than one process controls the spatial integration of light under the conditions investigated. It is hypothesized that these processes are excitation and inhibition in the visual receptive field. One subject, however, showed approximate equivalence for the homochromatic conditions (red on red and blue on blue), but none for the heterochromatic conditions (red on blue and blue on red) indicating perhaps interaction between color mechanisms. Spatial effects were also noted as a result of varying target size; these effects suggested lateral interaction of groups of receptors rather than the activity of single receptors during early dark adaptation.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. D. Baker, J. Opt. Soc. Am. 53, 169 (1963).
  2. F. Ratliff, Mack Bands: Quantitative Studies on Neural Networks in the Retina (Holden–Day, Inc., New York, 1965), p. 169.
  3. H. D. Baker, J. Opt. Soc. Am. 43, 798 (1953).
    [CrossRef] [PubMed]
  4. H. D. Baker, J. Opt. Soc. Am. 55, 615 (1965).
  5. H. D. Baker, M. D. Doran, and K. E. Miller, J. Opt. Soc. Am. 49, 1065 (1959).
    [CrossRef] [PubMed]
  6. B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).
    [CrossRef]
  7. W. S. Stiles, Anales Real Soc. Espan. Fis. Quim. (Madrid) 57, 149 (1961).
  8. W. A. H. Rushton, J. Physiol. (London) 181, 645 (1965).
  9. H. B. Barlow, Vision Res. 4, 47 (1964).
    [CrossRef] [PubMed]
  10. L. A. Riggs, R. N. Berry, and M. Wayner, J. Opt. Soc. Am. 39, 427 (1949).
    [CrossRef] [PubMed]
  11. T. N. Cornsweet, Am. J. Psychol. 75, 485 (1962).
    [CrossRef] [PubMed]
  12. J. P. Guilford, Psychometric Methods (McGraw-Hill Book Company, New York, 1954), 2nd ed., Ch. 5, p. 114.
  13. R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
    [CrossRef]
  14. H. B. Barlow, R. Fitzhugh, and S. W. Kuffler, J. Physiol. (London) 137, 338 (1957).
  15. V. D. Glezer, Vision Res. 5, 497 (1965).
    [CrossRef] [PubMed]
  16. W. G. Wagner, E. F. MacNichol, and M. L. Wolbarsht, J. Opt. Soc. Am. 53, 66 (1963).
    [CrossRef] [PubMed]
  17. R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
    [CrossRef] [PubMed]
  18. R. M. Boynton, S. R. Das, and Jean Gardiner, J. Opt. Soc. Am. 56, 1175 (1966).
  19. M. Alpern and W. A. H. Rushton, J. Physiol. (London) 176, 473 (1965).
  20. S. Hecht, C. Haig, and G. Wald, J. Gen. Physiol. 19, 321 (1935).
  21. C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 574 (1939).
    [CrossRef]
  22. C. H. Graham and N. R. Bartlett, J. Exptl. Psychol. 24, 574 (1939).
    [CrossRef]
  23. G. B. Arden and R. A. Weale, J. Physiol. (London) 125, 417 (1954).
  24. B. M. Hillman, J. Opt. Soc. Am. 48, 422 (1958).
    [CrossRef]

1966 (1)

R. M. Boynton, S. R. Das, and Jean Gardiner, J. Opt. Soc. Am. 56, 1175 (1966).

1965 (4)

M. Alpern and W. A. H. Rushton, J. Physiol. (London) 176, 473 (1965).

W. A. H. Rushton, J. Physiol. (London) 181, 645 (1965).

H. D. Baker, J. Opt. Soc. Am. 55, 615 (1965).

V. D. Glezer, Vision Res. 5, 497 (1965).
[CrossRef] [PubMed]

1964 (2)

H. B. Barlow, Vision Res. 4, 47 (1964).
[CrossRef] [PubMed]

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[CrossRef] [PubMed]

1963 (2)

1962 (1)

T. N. Cornsweet, Am. J. Psychol. 75, 485 (1962).
[CrossRef] [PubMed]

1961 (2)

W. S. Stiles, Anales Real Soc. Espan. Fis. Quim. (Madrid) 57, 149 (1961).

R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
[CrossRef]

1959 (1)

1958 (1)

1957 (1)

H. B. Barlow, R. Fitzhugh, and S. W. Kuffler, J. Physiol. (London) 137, 338 (1957).

1954 (1)

G. B. Arden and R. A. Weale, J. Physiol. (London) 125, 417 (1954).

1953 (1)

1949 (1)

1947 (1)

B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).
[CrossRef]

1939 (2)

C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 574 (1939).
[CrossRef]

C. H. Graham and N. R. Bartlett, J. Exptl. Psychol. 24, 574 (1939).
[CrossRef]

1935 (1)

S. Hecht, C. Haig, and G. Wald, J. Gen. Physiol. 19, 321 (1935).

Alpern, M.

M. Alpern and W. A. H. Rushton, J. Physiol. (London) 176, 473 (1965).

Arden, G. B.

G. B. Arden and R. A. Weale, J. Physiol. (London) 125, 417 (1954).

Baker, H. D.

Barlow, H. B.

H. B. Barlow, Vision Res. 4, 47 (1964).
[CrossRef] [PubMed]

H. B. Barlow, R. Fitzhugh, and S. W. Kuffler, J. Physiol. (London) 137, 338 (1957).

Bartlett, N. R.

C. H. Graham and N. R. Bartlett, J. Exptl. Psychol. 24, 574 (1939).
[CrossRef]

Berry, R. N.

Boynton, R. M.

R. M. Boynton, S. R. Das, and Jean Gardiner, J. Opt. Soc. Am. 56, 1175 (1966).

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[CrossRef] [PubMed]

R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
[CrossRef]

Brown, R. H.

C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 574 (1939).
[CrossRef]

Cornsweet, T. N.

T. N. Cornsweet, Am. J. Psychol. 75, 485 (1962).
[CrossRef] [PubMed]

Crawford, B. H.

B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).
[CrossRef]

Das, S. R.

R. M. Boynton, S. R. Das, and Jean Gardiner, J. Opt. Soc. Am. 56, 1175 (1966).

Doran, M. D.

Fitzhugh, R.

H. B. Barlow, R. Fitzhugh, and S. W. Kuffler, J. Physiol. (London) 137, 338 (1957).

Gardiner, Jean

R. M. Boynton, S. R. Das, and Jean Gardiner, J. Opt. Soc. Am. 56, 1175 (1966).

Glezer, V. D.

V. D. Glezer, Vision Res. 5, 497 (1965).
[CrossRef] [PubMed]

Graham, C. H.

C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 574 (1939).
[CrossRef]

C. H. Graham and N. R. Bartlett, J. Exptl. Psychol. 24, 574 (1939).
[CrossRef]

Guilford, J. P.

J. P. Guilford, Psychometric Methods (McGraw-Hill Book Company, New York, 1954), 2nd ed., Ch. 5, p. 114.

Haig, C.

S. Hecht, C. Haig, and G. Wald, J. Gen. Physiol. 19, 321 (1935).

Hecht, S.

S. Hecht, C. Haig, and G. Wald, J. Gen. Physiol. 19, 321 (1935).

Hillman, B. M.

Ikeda, M.

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[CrossRef] [PubMed]

R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
[CrossRef]

Kuffler, S. W.

H. B. Barlow, R. Fitzhugh, and S. W. Kuffler, J. Physiol. (London) 137, 338 (1957).

MacNichol, E. F.

Miller, K. E.

Mote, F. A.

C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 574 (1939).
[CrossRef]

Ratliff, F.

F. Ratliff, Mack Bands: Quantitative Studies on Neural Networks in the Retina (Holden–Day, Inc., New York, 1965), p. 169.

Riggs, L. A.

Rushton, W. A. H.

W. A. H. Rushton, J. Physiol. (London) 181, 645 (1965).

M. Alpern and W. A. H. Rushton, J. Physiol. (London) 176, 473 (1965).

Stiles, W. S.

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[CrossRef] [PubMed]

W. S. Stiles, Anales Real Soc. Espan. Fis. Quim. (Madrid) 57, 149 (1961).

Sturr, J. F.

Wagner, W. G.

Wald, G.

S. Hecht, C. Haig, and G. Wald, J. Gen. Physiol. 19, 321 (1935).

Wayner, M.

Weale, R. A.

G. B. Arden and R. A. Weale, J. Physiol. (London) 125, 417 (1954).

Wolbarsht, M. L.

Am. J. Psychol. (1)

T. N. Cornsweet, Am. J. Psychol. 75, 485 (1962).
[CrossRef] [PubMed]

Anales Real Soc. Espan. Fis. Quim. (Madrid) (1)

W. S. Stiles, Anales Real Soc. Espan. Fis. Quim. (Madrid) 57, 149 (1961).

J. Exptl. Psychol. (2)

C. H. Graham, R. H. Brown, and F. A. Mote, J. Exptl. Psychol. 24, 574 (1939).
[CrossRef]

C. H. Graham and N. R. Bartlett, J. Exptl. Psychol. 24, 574 (1939).
[CrossRef]

J. Gen. Physiol. (1)

S. Hecht, C. Haig, and G. Wald, J. Gen. Physiol. 19, 321 (1935).

J. Opt. Soc. Am. (9)

J. Physiol. (London) (4)

W. A. H. Rushton, J. Physiol. (London) 181, 645 (1965).

M. Alpern and W. A. H. Rushton, J. Physiol. (London) 176, 473 (1965).

G. B. Arden and R. A. Weale, J. Physiol. (London) 125, 417 (1954).

H. B. Barlow, R. Fitzhugh, and S. W. Kuffler, J. Physiol. (London) 137, 338 (1957).

Proc. Roy. Soc. (London) (1)

B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).
[CrossRef]

Vision Res. (3)

H. B. Barlow, Vision Res. 4, 47 (1964).
[CrossRef] [PubMed]

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[CrossRef] [PubMed]

V. D. Glezer, Vision Res. 5, 497 (1965).
[CrossRef] [PubMed]

Other (2)

J. P. Guilford, Psychometric Methods (McGraw-Hill Book Company, New York, 1954), 2nd ed., Ch. 5, p. 114.

F. Ratliff, Mack Bands: Quantitative Studies on Neural Networks in the Retina (Holden–Day, Inc., New York, 1965), p. 169.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Stimulus conditions: (A) The prevailing level of retinal illumination B1 is suddenly decreased to the new prevailing level B2 for 2 sec. The test flash (TF) is presented after time τ; (B) Both test-stimuli areas (0.25 and 0.96 deg) were superimposed on a 7.7-deg adapting field between two fixation points.

Fig. 2
Fig. 2

Log thresholds for RMB; top, as functions of time in the dark and of adapting-field retinal illuminance, for a red test stimulus superimposed on a red adapting stimulus; bottom, transformed in the manner of Crawford to equivalent-background retinal illuminance against time. The squares and circles refer to 0.25- and 0.96-deg test stimuli, respectively.

Fig. 3
Fig. 3

Log thresholds for RMB; top, as functions of time in the dark and adapting-field retinal illuminance, for a blue test stimulus superimposed on a blue adapting stimulus; bottom, transformed in the manner of Crawford to equivalent-background retinal illuminance against time. The squares and circles refer to 0.25- and 0.96-deg test stimuli, respectively.

Fig. 4
Fig. 4

Log thresholds for RMB; top, as functions of time in the dark and of adapting-field retinal illuminance, for a blue test stimulus superimposed on a red adapting stimulus; bottom, transformed in the manner of Crawford to equivalent-background retinal illuminance against time. The squares and circles refer to 0.25- and 0.96-deg test stimuli, respectively.

Fig. 5
Fig. 5

Log thresholds for RMB; top, as functions of time in the dark and of adapting-field retinal illuminance, for a red test stimulus superimposed on a blue adapting stimulus; bottom, transformed in the manner of Crawford to equivalent-background retinal illuminance against time. The squares and circles refer to 0.25- and 0.96-deg test stimuli, respectively.

Fig. 6
Fig. 6

Log thresholds for EJR; top, as functions of time in the dark and of adapting-field retinal illuminance, for a red test stimulus superimposed on a red adapting stimulus; bottom, transformed in the manner of Crawford to equivalent-background retinal illuminance against time. The squares and circles refer to 0.25- and 0.96-deg test stimuli, respectively.

Fig. 7
Fig. 7

Log thresholds for EJR; top, as functions of time in the dark and of adapting-field retinal illuminance, for a blue test stimulus superimposed on a blue adapting stimulus; bottom, transformed in the manner of Crawford to equivalent-background retinal illuminance against time. The squares and circles refer to 0.25- and 0.96-deg test stimuli, respectively.

Fig. 8
Fig. 8

Log thresholds for ALR; top, as functions of time in the dark and of adapting-field retinal illuminance, for a red test stimulus superimposed on a red adapting stimulus; bottom, transformed in the manner of Crawford to equivalent-background retinal illuminance, against time. The squares and circles refer to 0.25- and 0.96-deg test stimuli, respectively.

Fig. 9
Fig. 9

Log thresholds for ALR; top, as functions of time in the dark and of adapting-field retinal illuminance, for a blue test stimulus superimposed on a blue adapting stimulus; bottom, transformed in the manner of Crawford to equivalent-background retinal illuminance, against time. The squares and circles refer to 0.25- and 0.96-deg test stimuli, respectively.