Abstract

Reflected-light microscopy of semitransparent material, such as unstained nervous tissue, is usually unsatisfactory because of low contrast and light scattering. In a new microscope both the object plane and the image plane were scanned in tandem so that only light reflected from the object plane was included in the image. The object was illuminated with nearly incoherent light passing through holes in one side of a rotating scanning disk (Nipkow wheel) which was imaged by the objective into the object plane. Reflected-light images of these spots were conducted to the opposite side of the same disk. Light could pass from the source to the object plane, and from the object to the image plane, only through optically congruent holes on opposite side of the rotating disk. The image obtained had better contrast and sharpness for some semi-transparent material than possible in usual reflected-light microscopy.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription