Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Letters 8, 311 (1966).
    [CrossRef]
  2. H. Kogelnik, Bell System Tech. J. 44, 2451, (1965); E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 56, 523 (1966).
    [CrossRef]

1966 (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Letters 8, 311 (1966).
[CrossRef]

1965 (1)

H. Kogelnik, Bell System Tech. J. 44, 2451, (1965); E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 56, 523 (1966).
[CrossRef]

Goodman, J. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Letters 8, 311 (1966).
[CrossRef]

Huntley, W. H.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Letters 8, 311 (1966).
[CrossRef]

Jackson, D. W.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Letters 8, 311 (1966).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell System Tech. J. 44, 2451, (1965); E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 56, 523 (1966).
[CrossRef]

Lehmann, M.

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Letters 8, 311 (1966).
[CrossRef]

Appl. Phys. Letters (1)

J. W. Goodman, W. H. Huntley, D. W. Jackson, and M. Lehmann, Appl. Phys. Letters 8, 311 (1966).
[CrossRef]

Bell System Tech. J. (1)

H. Kogelnik, Bell System Tech. J. 44, 2451, (1965); E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 56, 523 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental arrangement for compensating diffuser distortions. (a) The exposure step. (b) The viewing step.

Fig. 2
Fig. 2

On the left: Distorted pattern appearing on diffuser. On the right: Retrieved image as seen in conjugate hologram order.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 / p + 1 / q = 1 / f ,
τ ( x 0 , y 0 ) = exp j φ ( x 0 , y 0 ) ,
τ * ( x , y ) · τ ( x , y ) · A ( x , y ) = A ( x , y ) .