Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Wu and G. Andermann, J. Opt. Soc. Am. 59, 519 (1968).
    [Crossref]
  2. The equivalent-critical-frequency-partitioning idea was originally suggested by C. K. Wu. Additional details on this technique may be found in Wu’s M.S. thesis, University of Hawaii (1967).
  3. E. Duesler, M.S. thesis. University of Hawaii (1968).
  4. Dr. B. Piriou, private communication.
  5. B. Piriou, Compt. Rend. 259, 1052 (1964).

1968 (1)

C. K. Wu and G. Andermann, J. Opt. Soc. Am. 59, 519 (1968).
[Crossref]

1964 (1)

B. Piriou, Compt. Rend. 259, 1052 (1964).

Andermann, G.

C. K. Wu and G. Andermann, J. Opt. Soc. Am. 59, 519 (1968).
[Crossref]

Duesler, E.

E. Duesler, M.S. thesis. University of Hawaii (1968).

Piriou, B.

B. Piriou, Compt. Rend. 259, 1052 (1964).

Piriou, Dr. B.

Dr. B. Piriou, private communication.

Wu, C. K.

C. K. Wu and G. Andermann, J. Opt. Soc. Am. 59, 519 (1968).
[Crossref]

The equivalent-critical-frequency-partitioning idea was originally suggested by C. K. Wu. Additional details on this technique may be found in Wu’s M.S. thesis, University of Hawaii (1967).

Compt. Rend. (1)

B. Piriou, Compt. Rend. 259, 1052 (1964).

J. Opt. Soc. Am. (1)

C. K. Wu and G. Andermann, J. Opt. Soc. Am. 59, 519 (1968).
[Crossref]

Other (3)

The equivalent-critical-frequency-partitioning idea was originally suggested by C. K. Wu. Additional details on this technique may be found in Wu’s M.S. thesis, University of Hawaii (1967).

E. Duesler, M.S. thesis. University of Hawaii (1968).

Dr. B. Piriou, private communication.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

MgO true and false phase-angle curves.

Fig. 2
Fig. 2

MgO lnr curve showing equivalent critical frequencies.

Fig. 3
Fig. 3

LiF reflectance (R), absorption index (k), and phase angle (θ) curves.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R ( ν p ) = R ( ν p * ) ,
R ( ν q ) = R ( ν q * ) .
θ ( ν p ) = θ A ( ν p ) + θ B ( ν p ) + θ C ( ν p ) ,
θ A ( ν p ) = 0 ν p I ( ν p , ν ) d ν
θ B ( ν p ) = ν p ν p * I ( ν p , ν ) d ν
θ C ( ν p ) = ν p * I ( ν p , ν ) d ν .
θ ( ν p ) = θ ( ν p ) π / 2 ν p ,
I ( ν p , ν ) = [ ln r ( ν p ) - ln r ( ν ) ] / ( ν 2 - ν p 2 ) .
θ ( ν q ) = θ D ( ν q ) + θ E ( ν q ) + θ F ( ν q ) ,