Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Arsenault and A. Boivin, J. Appl. Phys. 38, 3988 (1967).
    [Crossref]
  2. A. Boivin, J. Opt. Soc. Am. 42, 60 (1952).
    [Crossref]
  3. A. Boivin, Théorie et calcul des figures de diffraction de révolution (Les Presses de l’Université Laval, Québec, 1964).
  4. E. Lommel, Abhandl. K. Bayer. Akad. Wiss. 15, Abth. 2, 229 (1885).

1967 (1)

H. Arsenault and A. Boivin, J. Appl. Phys. 38, 3988 (1967).
[Crossref]

1952 (1)

1885 (1)

E. Lommel, Abhandl. K. Bayer. Akad. Wiss. 15, Abth. 2, 229 (1885).

Arsenault, H.

H. Arsenault and A. Boivin, J. Appl. Phys. 38, 3988 (1967).
[Crossref]

Boivin, A.

H. Arsenault and A. Boivin, J. Appl. Phys. 38, 3988 (1967).
[Crossref]

A. Boivin, J. Opt. Soc. Am. 42, 60 (1952).
[Crossref]

A. Boivin, Théorie et calcul des figures de diffraction de révolution (Les Presses de l’Université Laval, Québec, 1964).

Lommel, E.

E. Lommel, Abhandl. K. Bayer. Akad. Wiss. 15, Abth. 2, 229 (1885).

Abhandl. K. Bayer. Akad. Wiss. (1)

E. Lommel, Abhandl. K. Bayer. Akad. Wiss. 15, Abth. 2, 229 (1885).

J. Appl. Phys. (1)

H. Arsenault and A. Boivin, J. Appl. Phys. 38, 3988 (1967).
[Crossref]

J. Opt. Soc. Am. (1)

Other (1)

A. Boivin, Théorie et calcul des figures de diffraction de révolution (Les Presses de l’Université Laval, Québec, 1964).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (11)

Equations on this page are rendered with MathJax. Learn more.

G ( y , z ) = i Ω 0 1 f ( r 2 ) exp ( i y r 2 / 2 ) J 0 ( z r ) r d r ,
G ( y , z ) = - G ( - 4 k π , 0 ) O ( y + 4 k π , z ) .
G ( y , 0 ) = - 2 i y exp ( i y / 4 N ) [ 1 - exp ( i y / 2 ) ] [ 1 + exp ( i y / 4 N ) ] .
G ( 4 k π , 0 ) = { - i / ( 2 j + 1 ) π when k = N ( 2 j + 1 ) , j = 0 , ± 1 , ± 2 1 2 when k = 0 0 otherwise .
G ( y , z ) = 1 2 O ( y , z ) - i π - 1 2 j + 1 O [ y + 4 N ( 2 j + 1 ) π , z ] .
O ( y , z ) = ( 2 / i y ) { exp ( i y / 2 ) [ V 0 ( y , z ) - i V 1 ( y , z ) ] - exp ( - i z 2 / 2 y ) } .
O [ y + 4 N π ( 2 j + 1 ) , z ] 2 i y + 4 N π ( 2 j + 1 ) [ exp ( i y / 2 ) J 0 ( z ) - 1 ] .
G ( y , z ) 1 2 O ( y , z ) + 2 π [ exp ( i y / 2 ) J 0 ( z ) - 1 ] × - 1 [ y + 4 N π ( 2 j + 1 ) ] ( 2 j + 1 ) .
G ( 0 , z ) = 1 2 O ( 0 , z ) + 2 π j = 0 1 2 j + 1 Im O [ 4 N π ( 2 j + 1 ) , z ) ] .
G ( 0 , z ) J 1 ( z ) / z + 1 2 N π 2 [ J 0 ( z ) - 1 ] 1 ( 2 j + 1 ) 2 .
G ( 0 , z ) = J 1 ( z ) / z + 1 16 N [ J 0 ( z ) - 1 ] .