Abstract

A proper assessment of image quality in terms of optical transfer functions requires that the phase angle, as well as the absolute value of the OTF be taken into account. This paper discusses one procedure for accounting for phase in image-quality evaluation.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill Book Co., New York, 1961), p. 138.
  2. F. Scott and R. E. Hufnagel, J. Opt. Soc. Am. 55, 1564A (1965).
    [Crossref]
  3. F. Scott, Phot. Sci. Eng. 12,(3), 154 (1968).

1968 (1)

F. Scott, Phot. Sci. Eng. 12,(3), 154 (1968).

1965 (1)

F. Scott and R. E. Hufnagel, J. Opt. Soc. Am. 55, 1564A (1965).
[Crossref]

Hufnagel, R. E.

F. Scott and R. E. Hufnagel, J. Opt. Soc. Am. 55, 1564A (1965).
[Crossref]

Korn, G. A.

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill Book Co., New York, 1961), p. 138.

Korn, T. M.

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill Book Co., New York, 1961), p. 138.

Scott, F.

F. Scott, Phot. Sci. Eng. 12,(3), 154 (1968).

F. Scott and R. E. Hufnagel, J. Opt. Soc. Am. 55, 1564A (1965).
[Crossref]

J. Opt. Soc. Am. (1)

F. Scott and R. E. Hufnagel, J. Opt. Soc. Am. 55, 1564A (1965).
[Crossref]

Phot. Sci. Eng. (1)

F. Scott, Phot. Sci. Eng. 12,(3), 154 (1968).

Other (1)

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill Book Co., New York, 1961), p. 138.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Q ( a ) = - + I ( x ) W ¯ ( x , a ) d x .
Q ( a ) = - + T ( k ) W ( k , a ) d k .
- + W ( k , a ) I { T ( k ) } d k = 0
- + W ( k , a ) { T ( k ) } d k = Q ( a ) ,
Q ( a ) = { min max v } - + I ( x + u ) W ¯ ( x + v , a ) d x ,
Q ( a ) = { min max v } - + T ( k ) W ( k , a ) e 2 π i k ( u - v ) d k .
Q ( a ) = { min max v } - + W ( k , a ) M ( k ) × cos [ ϕ ( k ) + 2 π k ( u - v ) ] d k .
- + k W ( k , a ) M ( k ) sin [ ϕ ( k ) + 2 π k ( u - v ) ] d k = 0.
ϕ ( k ) = 2 π b k + Ψ ( k ) ,
Q ( a ) = - + W ( k , a ) M ( k ) d k ,