Abstract

Spatial and temporal coherence requirements for off-axis reference-beam holograms are reduced to those for in-line holograms by using interferometer arrangements producing achromatic fringes. Using this technique, we have produced high-quality holograms of back-lighted objects, using a high-pressure mercury-arc lamp.

© 1967 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. R. E. Brooks, L. O. Heflinger, and R. F. Wuerker, IEEE J. Quantum Electronics QE-2, 275 (1966).
  2. J. M. Burch, J. W. Gates, R. G. N. Hill, and L. H. Tanner, Nature 212, 1347 (1966). Burch has used the scatter-plate method to produce holograms with a mercury-arc source (Burch, private conversation, January 1967); and he has also described a system in which a diffraction grating was imaged onto the hologram to provide a white-light image-plane hologram [J. M. Burch and A. E. Ennos, J. Opt. Soc. Am. 56, 541A (1966)].
  3. R. W. Ditchburn, Light (Blackie & Son, Ltd., London, 1963), 2nd ed., pp. 148โ€“152.
  4. A. W. Lohmann, Optica Acta 9, 1 (1962).
  5. E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).
  6. W. H. Carter, P. D. Engeling, and A. A. Dougal, IEEE J. Quantum Electronics QE-2, 44 (1966).
  7. E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 53, 1377 (1963).
  8. D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).
  9. The transition from Eq. (4) to Eq. (5) involves a rather great amount of algebra, as well as the evaluation of a Fresnel integral. A similar calculation is given in detail by Vander Lugt [A. Vander Lugt, Proc. IEEE 54, 1055 (1966)].
  10. The holographic system is linear in the usual sense that, if a signal s(x3,y3) produces a recorded holographic signal S0(x4,y4), then a signal a1s1(x3,y3)+a2s2(x3,y3) produces the holographic signal a1s01(x4,y4)+a2s02(x4,y4), where S0, S01, S02 refer to the real or the virtual-image term, or both. The recording system, since it is a square-law detector, is, of course, nonlinear but that does not violate the criterion of linearity given above.
  11. L. Mandel, J. Opt. Soc. Am. 56, 1636 (1966).

Brooks, R. E.

R. E. Brooks, L. O. Heflinger, and R. F. Wuerker, IEEE J. Quantum Electronics QE-2, 275 (1966).

Burch, J. M.

J. M. Burch, J. W. Gates, R. G. N. Hill, and L. H. Tanner, Nature 212, 1347 (1966). Burch has used the scatter-plate method to produce holograms with a mercury-arc source (Burch, private conversation, January 1967); and he has also described a system in which a diffraction grating was imaged onto the hologram to provide a white-light image-plane hologram [J. M. Burch and A. E. Ennos, J. Opt. Soc. Am. 56, 541A (1966)].

Carter, W. H.

W. H. Carter, P. D. Engeling, and A. A. Dougal, IEEE J. Quantum Electronics QE-2, 44 (1966).

Ditchburn, R. W.

R. W. Ditchburn, Light (Blackie & Son, Ltd., London, 1963), 2nd ed., pp. 148โ€“152.

Dougal, A. A.

W. H. Carter, P. D. Engeling, and A. A. Dougal, IEEE J. Quantum Electronics QE-2, 44 (1966).

Engeling, P. D.

W. H. Carter, P. D. Engeling, and A. A. Dougal, IEEE J. Quantum Electronics QE-2, 44 (1966).

Gabor, D.

D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).

Gates, J. W.

J. M. Burch, J. W. Gates, R. G. N. Hill, and L. H. Tanner, Nature 212, 1347 (1966). Burch has used the scatter-plate method to produce holograms with a mercury-arc source (Burch, private conversation, January 1967); and he has also described a system in which a diffraction grating was imaged onto the hologram to provide a white-light image-plane hologram [J. M. Burch and A. E. Ennos, J. Opt. Soc. Am. 56, 541A (1966)].

Heflinger, L. O.

R. E. Brooks, L. O. Heflinger, and R. F. Wuerker, IEEE J. Quantum Electronics QE-2, 275 (1966).

Hill, R. G. N.

J. M. Burch, J. W. Gates, R. G. N. Hill, and L. H. Tanner, Nature 212, 1347 (1966). Burch has used the scatter-plate method to produce holograms with a mercury-arc source (Burch, private conversation, January 1967); and he has also described a system in which a diffraction grating was imaged onto the hologram to provide a white-light image-plane hologram [J. M. Burch and A. E. Ennos, J. Opt. Soc. Am. 56, 541A (1966)].

Leith, E. N.

E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 53, 1377 (1963).

E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).

Lohmann, A. W.

A. W. Lohmann, Optica Acta 9, 1 (1962).

Lugt, A. Vander

The transition from Eq. (4) to Eq. (5) involves a rather great amount of algebra, as well as the evaluation of a Fresnel integral. A similar calculation is given in detail by Vander Lugt [A. Vander Lugt, Proc. IEEE 54, 1055 (1966)].

Mandel, L.

L. Mandel, J. Opt. Soc. Am. 56, 1636 (1966).

Tanner, L. H.

J. M. Burch, J. W. Gates, R. G. N. Hill, and L. H. Tanner, Nature 212, 1347 (1966). Burch has used the scatter-plate method to produce holograms with a mercury-arc source (Burch, private conversation, January 1967); and he has also described a system in which a diffraction grating was imaged onto the hologram to provide a white-light image-plane hologram [J. M. Burch and A. E. Ennos, J. Opt. Soc. Am. 56, 541A (1966)].

Upatnieks, J.

E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 53, 1377 (1963).

E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).

Wuerker, R. F.

R. E. Brooks, L. O. Heflinger, and R. F. Wuerker, IEEE J. Quantum Electronics QE-2, 275 (1966).

Other (11)

R. E. Brooks, L. O. Heflinger, and R. F. Wuerker, IEEE J. Quantum Electronics QE-2, 275 (1966).

J. M. Burch, J. W. Gates, R. G. N. Hill, and L. H. Tanner, Nature 212, 1347 (1966). Burch has used the scatter-plate method to produce holograms with a mercury-arc source (Burch, private conversation, January 1967); and he has also described a system in which a diffraction grating was imaged onto the hologram to provide a white-light image-plane hologram [J. M. Burch and A. E. Ennos, J. Opt. Soc. Am. 56, 541A (1966)].

R. W. Ditchburn, Light (Blackie & Son, Ltd., London, 1963), 2nd ed., pp. 148โ€“152.

A. W. Lohmann, Optica Acta 9, 1 (1962).

E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 52, 1123 (1962).

W. H. Carter, P. D. Engeling, and A. A. Dougal, IEEE J. Quantum Electronics QE-2, 44 (1966).

E. N. Leith and J. Upatnieks, J. Opt. Soc. Am. 53, 1377 (1963).

D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949).

The transition from Eq. (4) to Eq. (5) involves a rather great amount of algebra, as well as the evaluation of a Fresnel integral. A similar calculation is given in detail by Vander Lugt [A. Vander Lugt, Proc. IEEE 54, 1055 (1966)].

The holographic system is linear in the usual sense that, if a signal s(x3,y3) produces a recorded holographic signal S0(x4,y4), then a signal a1s1(x3,y3)+a2s2(x3,y3) produces the holographic signal a1s01(x4,y4)+a2s02(x4,y4), where S0, S01, S02 refer to the real or the virtual-image term, or both. The recording system, since it is a square-law detector, is, of course, nonlinear but that does not violate the criterion of linearity given above.

L. Mandel, J. Opt. Soc. Am. 56, 1636 (1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.