Abstract

The necessary and sufficient conditions are derived in order that an infinite plane object, illuminated by a plane monochromatic wave of normal incidence, images itself without the aid of lenses or other optical accessories. This involves a solution of the reduced wave equation which does not satisfy the Sommerfeld radiation condition. The solution is obtained by requiring a geometrical-optics limiting condition as the wavelength λ goes to zero. Two cases of self-imaging are considered. The first case, called weak, deals with the faithful imaging of objects whose spatial frequencies are all much smaller than the (1/λ) value of the illuminating source. The conditions for this case demand that the two-dimensional Fourier spectrum of the object lies on the circles of a Fresnel zone plate. The second case, called strong, deals with the faithful imaging of objects for spatial frequencies up to the natural cutoff of 1/λ. Both doubly- and singly-periodic and nonperiodic objects are considered. For periodic objects the results are shown to agree well with the experimental and theoretical work to date, the latter of which has always employed the Fresnel–Kirchhoff diffraction integral with the parabolic approximation appropriate to Fresnel diffraction.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription