Abstract

The continuous atomic-absorption cross section of lithium and sodium vapors has been measured between 600 and 1000 Å using photoelectric techniques. Curves and tables are presented of the atomic-absorption cross section versus energy from their series limits to 600 Å. A comparison is made between these results and recent theoretical estimates. The conclusion is that theory and experiment are in poor agreement for sodium at photon energies above 7 eV.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Hudson, Phys. Rev. 135, A1212 (1964).
    [Crossref]
  2. R. D. Hudson and V. L. Carter, Phys. Rev. 137, A1648 (1965).
    [Crossref]
  3. R. W. Ditchburn and P. J. Jutsum, Nature 165, 723 (1950).
    [Crossref] [PubMed]
  4. R. W. Ditchburn, P. J. Jutsum, and G. V. Marr, Proc. Roy. Soc. (London) A219, 89 (1953).
  5. G. V. Marr, Proc. Phys. Soc. (London) 81, 9 (1963).
    [Crossref]
  6. J. J. Hopfield, Astrophys. J. 72, 133 (1930).
    [Crossref]
  7. P. H. Metzger and G. R. Cook, J. Quant. Spectry. Radiative Transfer 4, 107 (1964).
    [Crossref]
  8. R. E. Huffman, J. C. Larrabee, and Y. Tanaka, Appl. Opt. 4, 1581 (1965).
    [Crossref]
  9. JANAF Thermochemical Tables (The Dow Chemical Company, Midland, Michigan, 1962).
  10. J. W. Cooper, Phys. Rev. 128, 681 (1962).
    [Crossref]
  11. A. H. Boyd, Planetary Space Sci. 12, 729 (1964).
    [Crossref]
  12. J. W. Sheldon, J. Appl. Phys. 37, 2928 (1966).
    [Crossref]
  13. A. Burgess and M. J. Seaton, Monthly Notices Roy. Astron. Soc. 120, 121 (1960).
  14. H. Beutler and K. Guggenheimer, Z. Physik 87, 188 (1934); Z. Physik 88, 25 (1934).
    [Crossref]
  15. H. Beutler, Z. Physik 91, 131 (1934).
    [Crossref]
  16. Preliminary measurements in this laboratory of the (3p)6 4s ²S12→(3p)5 (4s)2 ²P32 and (3p)6 4s ²S12→(3p)5 (4s)2 ²P12 transitions at 662.38 Å and 653.31 Å, respectively, in potassium vapor, indicate peak absorption cross sections of the order of 10−15 cm2 and a total oscillator strength of 0.16.

1966 (1)

J. W. Sheldon, J. Appl. Phys. 37, 2928 (1966).
[Crossref]

1965 (2)

R. D. Hudson and V. L. Carter, Phys. Rev. 137, A1648 (1965).
[Crossref]

R. E. Huffman, J. C. Larrabee, and Y. Tanaka, Appl. Opt. 4, 1581 (1965).
[Crossref]

1964 (3)

R. D. Hudson, Phys. Rev. 135, A1212 (1964).
[Crossref]

P. H. Metzger and G. R. Cook, J. Quant. Spectry. Radiative Transfer 4, 107 (1964).
[Crossref]

A. H. Boyd, Planetary Space Sci. 12, 729 (1964).
[Crossref]

1963 (1)

G. V. Marr, Proc. Phys. Soc. (London) 81, 9 (1963).
[Crossref]

1962 (1)

J. W. Cooper, Phys. Rev. 128, 681 (1962).
[Crossref]

1960 (1)

A. Burgess and M. J. Seaton, Monthly Notices Roy. Astron. Soc. 120, 121 (1960).

1953 (1)

R. W. Ditchburn, P. J. Jutsum, and G. V. Marr, Proc. Roy. Soc. (London) A219, 89 (1953).

1950 (1)

R. W. Ditchburn and P. J. Jutsum, Nature 165, 723 (1950).
[Crossref] [PubMed]

1934 (2)

H. Beutler and K. Guggenheimer, Z. Physik 87, 188 (1934); Z. Physik 88, 25 (1934).
[Crossref]

H. Beutler, Z. Physik 91, 131 (1934).
[Crossref]

1930 (1)

J. J. Hopfield, Astrophys. J. 72, 133 (1930).
[Crossref]

Beutler, H.

H. Beutler and K. Guggenheimer, Z. Physik 87, 188 (1934); Z. Physik 88, 25 (1934).
[Crossref]

H. Beutler, Z. Physik 91, 131 (1934).
[Crossref]

Boyd, A. H.

A. H. Boyd, Planetary Space Sci. 12, 729 (1964).
[Crossref]

Burgess, A.

A. Burgess and M. J. Seaton, Monthly Notices Roy. Astron. Soc. 120, 121 (1960).

Carter, V. L.

R. D. Hudson and V. L. Carter, Phys. Rev. 137, A1648 (1965).
[Crossref]

Cook, G. R.

P. H. Metzger and G. R. Cook, J. Quant. Spectry. Radiative Transfer 4, 107 (1964).
[Crossref]

Cooper, J. W.

J. W. Cooper, Phys. Rev. 128, 681 (1962).
[Crossref]

Ditchburn, R. W.

R. W. Ditchburn, P. J. Jutsum, and G. V. Marr, Proc. Roy. Soc. (London) A219, 89 (1953).

R. W. Ditchburn and P. J. Jutsum, Nature 165, 723 (1950).
[Crossref] [PubMed]

Guggenheimer, K.

H. Beutler and K. Guggenheimer, Z. Physik 87, 188 (1934); Z. Physik 88, 25 (1934).
[Crossref]

Hopfield, J. J.

J. J. Hopfield, Astrophys. J. 72, 133 (1930).
[Crossref]

Hudson, R. D.

R. D. Hudson and V. L. Carter, Phys. Rev. 137, A1648 (1965).
[Crossref]

R. D. Hudson, Phys. Rev. 135, A1212 (1964).
[Crossref]

Huffman, R. E.

Jutsum, P. J.

R. W. Ditchburn, P. J. Jutsum, and G. V. Marr, Proc. Roy. Soc. (London) A219, 89 (1953).

R. W. Ditchburn and P. J. Jutsum, Nature 165, 723 (1950).
[Crossref] [PubMed]

Larrabee, J. C.

Marr, G. V.

G. V. Marr, Proc. Phys. Soc. (London) 81, 9 (1963).
[Crossref]

R. W. Ditchburn, P. J. Jutsum, and G. V. Marr, Proc. Roy. Soc. (London) A219, 89 (1953).

Metzger, P. H.

P. H. Metzger and G. R. Cook, J. Quant. Spectry. Radiative Transfer 4, 107 (1964).
[Crossref]

Seaton, M. J.

A. Burgess and M. J. Seaton, Monthly Notices Roy. Astron. Soc. 120, 121 (1960).

Sheldon, J. W.

J. W. Sheldon, J. Appl. Phys. 37, 2928 (1966).
[Crossref]

Tanaka, Y.

Appl. Opt. (1)

Astrophys. J. (1)

J. J. Hopfield, Astrophys. J. 72, 133 (1930).
[Crossref]

J. Appl. Phys. (1)

J. W. Sheldon, J. Appl. Phys. 37, 2928 (1966).
[Crossref]

J. Quant. Spectry. Radiative Transfer (1)

P. H. Metzger and G. R. Cook, J. Quant. Spectry. Radiative Transfer 4, 107 (1964).
[Crossref]

Monthly Notices Roy. Astron. Soc. (1)

A. Burgess and M. J. Seaton, Monthly Notices Roy. Astron. Soc. 120, 121 (1960).

Nature (1)

R. W. Ditchburn and P. J. Jutsum, Nature 165, 723 (1950).
[Crossref] [PubMed]

Phys. Rev. (3)

R. D. Hudson, Phys. Rev. 135, A1212 (1964).
[Crossref]

R. D. Hudson and V. L. Carter, Phys. Rev. 137, A1648 (1965).
[Crossref]

J. W. Cooper, Phys. Rev. 128, 681 (1962).
[Crossref]

Planetary Space Sci. (1)

A. H. Boyd, Planetary Space Sci. 12, 729 (1964).
[Crossref]

Proc. Phys. Soc. (London) (1)

G. V. Marr, Proc. Phys. Soc. (London) 81, 9 (1963).
[Crossref]

Proc. Roy. Soc. (London) (1)

R. W. Ditchburn, P. J. Jutsum, and G. V. Marr, Proc. Roy. Soc. (London) A219, 89 (1953).

Z. Physik (2)

H. Beutler and K. Guggenheimer, Z. Physik 87, 188 (1934); Z. Physik 88, 25 (1934).
[Crossref]

H. Beutler, Z. Physik 91, 131 (1934).
[Crossref]

Other (2)

Preliminary measurements in this laboratory of the (3p)6 4s ²S12→(3p)5 (4s)2 ²P32 and (3p)6 4s ²S12→(3p)5 (4s)2 ²P12 transitions at 662.38 Å and 653.31 Å, respectively, in potassium vapor, indicate peak absorption cross sections of the order of 10−15 cm2 and a total oscillator strength of 0.16.

JANAF Thermochemical Tables (The Dow Chemical Company, Midland, Michigan, 1962).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

2.2-m monochromator and associated equipment.

Fig. 2
Fig. 2

Atomic-absorption cross sections for lithium and sodium vapors versus wavelength. The lithium cross sections have been reduced by a factor of 1 10 to permit presentation on the same figure.

Fig. 3
Fig. 3

Measured atomic-absorption cross section of lithium vapor vs the energy of the ejected electron.

Fig. 4
Fig. 4

Atomic-absorption cross section of sodium vapor vs the energy of the ejected electron. Curve 1 represents the experimental results; 2, Sheldon; 3, Cooper10; 4, Boyd11 (dipole velocity); 5, Boyd (dipole length).

Tables (2)

Tables Icon

Table I Lithium atomic-absorption cross sections.

Tables Icon

Table II Sodium atomic-absorption cross sections.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ln [ I 0 ( λ ) / I ( λ ) ] = C a σ a ( λ ) L + C m σ m ( λ ) L ,