Abstract

PDF Article

References

  • View by:
  • |
  • |

  1. J. T. Winthrop and C. R. Worthington, J. Opt. Soc. Am. 56, 588 (1966).
  2. C. J. Bouwkamp, Rept. Progr. Phys. 17, 39 (1954).
  3. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964), pp. 311–313 for list of requirements.
  4. Kirchhoff's boundary conditions are sometimes used with Rayleigh's integral formulas to solve diffraction problems. The resulting theory is called the Rayleigh-Sommerfeld diffraction theory. Wolf and Marchand give a thorough comparison between the Rayleigh-Sommerfeld and Fresnel-Kirchhoff theories: E. Wolf and E. W. Marchand, J. Opt. Soc. Am. 54, 587 (1964). E. W. Marchand and E. Wolf, J. Opt. Soc. Am. 56, 1712
  5. M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1965), 3rd ed., Sec. 11.7, Eq. 27.
  6. J. A. Stratton, Electromaagnetic Theory (McGraw-Hill Book Company, New York, 1941), p. 363.
  7. H. G. Booker and P. C. Clemmow, Proc. Inst. Elec. Engrs (London) Pt. III, 97, 11 (1950).
  8. J. A. Ratcliffe, Rept. Progr. Phys. 19, 188 (1956).
  9. E. Wolf, Proc. Phys. Soc. (London) 74, 280 (1959).
  10. D. Gabor in Progress in Optics Vol. 1, E. Wolf, editor (North-Holland Publishing Co., Amsterdam, 1961), p. 136.
  11. C. J. Bouwkamp, Rept. Progr. Phys. 17, 35 (1954). Eq. 2.18.
  12. H. Osterberg, J. Opt. Soc. Am. 55, 1467 (1965).
  13. A referee has indicated that John T. Winthrop has a derivation similar to that of this paper in his Ph.D. thesis, August 1966, written at the University of Michigan, Ann Arbor, Mich.

Booker, H. G.

H. G. Booker and P. C. Clemmow, Proc. Inst. Elec. Engrs (London) Pt. III, 97, 11 (1950).

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1965), 3rd ed., Sec. 11.7, Eq. 27.

Bouwkamp, C. J.

C. J. Bouwkamp, Rept. Progr. Phys. 17, 39 (1954).

C. J. Bouwkamp, Rept. Progr. Phys. 17, 35 (1954). Eq. 2.18.

Clemmow, P. C.

H. G. Booker and P. C. Clemmow, Proc. Inst. Elec. Engrs (London) Pt. III, 97, 11 (1950).

Gabor, D.

D. Gabor in Progress in Optics Vol. 1, E. Wolf, editor (North-Holland Publishing Co., Amsterdam, 1961), p. 136.

Luneburg, R. K.

R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964), pp. 311–313 for list of requirements.

Marchand, E. W.

Kirchhoff's boundary conditions are sometimes used with Rayleigh's integral formulas to solve diffraction problems. The resulting theory is called the Rayleigh-Sommerfeld diffraction theory. Wolf and Marchand give a thorough comparison between the Rayleigh-Sommerfeld and Fresnel-Kirchhoff theories: E. Wolf and E. W. Marchand, J. Opt. Soc. Am. 54, 587 (1964). E. W. Marchand and E. Wolf, J. Opt. Soc. Am. 56, 1712

Osterberg, H.

H. Osterberg, J. Opt. Soc. Am. 55, 1467 (1965).

Ratcliffe, J. A.

J. A. Ratcliffe, Rept. Progr. Phys. 19, 188 (1956).

Stratton, J. A.

J. A. Stratton, Electromaagnetic Theory (McGraw-Hill Book Company, New York, 1941), p. 363.

Winthrop, J. T.

J. T. Winthrop and C. R. Worthington, J. Opt. Soc. Am. 56, 588 (1966).

Wolf, E.

Kirchhoff's boundary conditions are sometimes used with Rayleigh's integral formulas to solve diffraction problems. The resulting theory is called the Rayleigh-Sommerfeld diffraction theory. Wolf and Marchand give a thorough comparison between the Rayleigh-Sommerfeld and Fresnel-Kirchhoff theories: E. Wolf and E. W. Marchand, J. Opt. Soc. Am. 54, 587 (1964). E. W. Marchand and E. Wolf, J. Opt. Soc. Am. 56, 1712

M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1965), 3rd ed., Sec. 11.7, Eq. 27.

E. Wolf, Proc. Phys. Soc. (London) 74, 280 (1959).

Worthington, C. R.

J. T. Winthrop and C. R. Worthington, J. Opt. Soc. Am. 56, 588 (1966).

Other (13)

J. T. Winthrop and C. R. Worthington, J. Opt. Soc. Am. 56, 588 (1966).

C. J. Bouwkamp, Rept. Progr. Phys. 17, 39 (1954).

R. K. Luneburg, Mathematical Theory of Optics (University of California Press, Berkeley, 1964), pp. 311–313 for list of requirements.

Kirchhoff's boundary conditions are sometimes used with Rayleigh's integral formulas to solve diffraction problems. The resulting theory is called the Rayleigh-Sommerfeld diffraction theory. Wolf and Marchand give a thorough comparison between the Rayleigh-Sommerfeld and Fresnel-Kirchhoff theories: E. Wolf and E. W. Marchand, J. Opt. Soc. Am. 54, 587 (1964). E. W. Marchand and E. Wolf, J. Opt. Soc. Am. 56, 1712

M. Born and E. Wolf, Principles of Optics (Pergamon Press, New York, 1965), 3rd ed., Sec. 11.7, Eq. 27.

J. A. Stratton, Electromaagnetic Theory (McGraw-Hill Book Company, New York, 1941), p. 363.

H. G. Booker and P. C. Clemmow, Proc. Inst. Elec. Engrs (London) Pt. III, 97, 11 (1950).

J. A. Ratcliffe, Rept. Progr. Phys. 19, 188 (1956).

E. Wolf, Proc. Phys. Soc. (London) 74, 280 (1959).

D. Gabor in Progress in Optics Vol. 1, E. Wolf, editor (North-Holland Publishing Co., Amsterdam, 1961), p. 136.

C. J. Bouwkamp, Rept. Progr. Phys. 17, 35 (1954). Eq. 2.18.

H. Osterberg, J. Opt. Soc. Am. 55, 1467 (1965).

A referee has indicated that John T. Winthrop has a derivation similar to that of this paper in his Ph.D. thesis, August 1966, written at the University of Michigan, Ann Arbor, Mich.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.