Abstract

The carbon arc in argon, even at atmospheric pressure, possesses excellent qualities as a radiation standard, in comparison with which the so-called standard arc in air is much inferior. A further improvement is to be expected if the rapid intensity fluctuations common to all forms of the arc can be overcome. In its most easily attainable form, the arc is free from band structure and capable of a crater temperature of about 4300°K, under elevated pressure.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Macpherson, J. Opt. Soc. Am. 30, 189 (1940).
    [CrossRef]
  2. N. K. Chaney, V. C. Hamister, and S. W. Glass, Trans. Elec. Soc. 47, 107 (1935).
    [CrossRef]
  3. James Basset, O. Lummer, and R. Zaer, J. Phys. Radium,  10,Ser. 7, 216 (1939).
    [CrossRef]
  4. R. Zaer, thesis, D.Sc. Phys. 1935, Fac. de Paris, “Temperatures des flammes et Vaporisation du Carbone.”
  5. H. Kohn and M. Guckel, Z. Physik 27, 341 (1924).
    [CrossRef]

1940 (1)

1939 (1)

James Basset, O. Lummer, and R. Zaer, J. Phys. Radium,  10,Ser. 7, 216 (1939).
[CrossRef]

1935 (1)

N. K. Chaney, V. C. Hamister, and S. W. Glass, Trans. Elec. Soc. 47, 107 (1935).
[CrossRef]

1924 (1)

H. Kohn and M. Guckel, Z. Physik 27, 341 (1924).
[CrossRef]

Basset, James

James Basset, O. Lummer, and R. Zaer, J. Phys. Radium,  10,Ser. 7, 216 (1939).
[CrossRef]

Chaney, N. K.

N. K. Chaney, V. C. Hamister, and S. W. Glass, Trans. Elec. Soc. 47, 107 (1935).
[CrossRef]

Glass, S. W.

N. K. Chaney, V. C. Hamister, and S. W. Glass, Trans. Elec. Soc. 47, 107 (1935).
[CrossRef]

Guckel, M.

H. Kohn and M. Guckel, Z. Physik 27, 341 (1924).
[CrossRef]

Hamister, V. C.

N. K. Chaney, V. C. Hamister, and S. W. Glass, Trans. Elec. Soc. 47, 107 (1935).
[CrossRef]

Kohn, H.

H. Kohn and M. Guckel, Z. Physik 27, 341 (1924).
[CrossRef]

Lummer, O.

James Basset, O. Lummer, and R. Zaer, J. Phys. Radium,  10,Ser. 7, 216 (1939).
[CrossRef]

Macpherson, H. G.

Zaer, R.

James Basset, O. Lummer, and R. Zaer, J. Phys. Radium,  10,Ser. 7, 216 (1939).
[CrossRef]

R. Zaer, thesis, D.Sc. Phys. 1935, Fac. de Paris, “Temperatures des flammes et Vaporisation du Carbone.”

J. Opt. Soc. Am. (1)

J. Phys. Radium (1)

James Basset, O. Lummer, and R. Zaer, J. Phys. Radium,  10,Ser. 7, 216 (1939).
[CrossRef]

Trans. Elec. Soc. (1)

N. K. Chaney, V. C. Hamister, and S. W. Glass, Trans. Elec. Soc. 47, 107 (1935).
[CrossRef]

Z. Physik (1)

H. Kohn and M. Guckel, Z. Physik 27, 341 (1924).
[CrossRef]

Other (1)

R. Zaer, thesis, D.Sc. Phys. 1935, Fac. de Paris, “Temperatures des flammes et Vaporisation du Carbone.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Break-apart sketch of the arc pressure chamber.

Fig. 2
Fig. 2

Measured absolute intensity of the carbon arc in argon; atmospheric pressure; current 15 A.

Fig. 3
Fig. 3

Measured absolute intensity of the carbon arc in argon; pressure 8 atm; current 15 A.

Tables (1)

Tables Icon

Table I Comparison of temperatures for various pressures and gases found by different investigators.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q λ W / Q λ C = K W λ W J λ ( T W ) / K C λ C J λ ( T C ) .
J λ ( T C ) = ( A c 1 / h c λ 4 ) exp ( - c 2 / λ T C ) ,
c 2 / λ T C = log ( h c K W / A c 1 λ C K C ) - log [ Q λ C λ 4 λ W J λ ( T W ) / Q λ W ] .