Abstract

Low-intensity reciprocity failure (LIRF) of a silver bromide emulsion was drastically reduced, but not eliminated, by the addition of a halogen acceptor, such as acetone semicarbazone, before coating. The remaining failure has a slope of approximately minus unity on an isodensity plot of log intensity vs log intensity × time. This is interpreted as exemplifying two types of LIRF, an intergranular type stopped by a sufficient amount of halogen acceptor, and an intragranular type caused by the thermal instability of a photolytically produced silver atom. A LIRF curve was also obtained in terms of the number of absorbed photons necessary to make a grain developable. These data suggest that considerable recombination occurs before nucleation of the latent image. The quantum efficiency of formation of print-out silver is 0.2 silver atom per absorbed photon. This value indicates that growth of the latent image after nucleation is efficient.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. O. Rawling and J. W. Glassett, Phot. J. 66, 495 (1926).
  2. S. E. Sheppard and E. P. Wightman, in Ber. VIII Internat. Kongr. Phot., Dresden, 1931, J. Eggert and A. von Biehler, Eds. (J. Barth, Leipzig, 1932), p. 157.
  3. T. Price, Phot. J. 71, 59 (1931).
  4. W. F. Berg, Trans. Faraday Soc. 44, 783 (1948).
    [Crossref]
  5. R. W. Swenson, F. G. Forsgard, and R. V. Dyba, Phot. Sci. Tech. (2) 3, 162 (1956).
  6. T. H. James, W. Vanselow, and R. F. Quirk, Phot. Sci. Eng. 5, 216 (1961).
  7. H. E. Spencer, L. E. Brady, and J. F. Hamilton, J. Opt. Soc. Am. 54, 492 (1964); H. E. Spencer and R. E. Atwell, J. Opt. Soc. Am. 54, 498 (1964); J. Opt. Soc. Am. 56, 1095 (1966).
    [Crossref]
  8. W. G. Lowe, J. E. Jones, and H. E. Roberts, in Fundamental Mechanisms of Photographic Sensitivity, Ed. by J. W. Mitchell (Butterworths Scientific Publications Ltd., London, 1951), p. 112.
  9. J. H. Webb, J. Opt. Soc. Am. 40, 3 (1950).
    [Crossref]
  10. E. Katz, J. Chem. Phys. 17, 1132 (1949).
    [Crossref]
  11. P. V. Meĭklyar, Doklady Akad. Nauk SSSR 85, 1255 (1952).
  12. C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London) A235, 518 (1956).
  13. J. F. Hamilton and B. E. Bayer, J. Opt. Soc. Am. 55, 528 (1965). B. E. Bayer and J. F. Hamilton, J. Opt. Soc. Am. 55, 439 (1965).
    [Crossref]
  14. C. E. K. Mees and T. H. James, The Theory of the Photographic Process (Macmillan Co., New York, 1966), 3rd ed., Ch. 5.

1965 (1)

1964 (1)

1961 (1)

T. H. James, W. Vanselow, and R. F. Quirk, Phot. Sci. Eng. 5, 216 (1961).

1956 (2)

R. W. Swenson, F. G. Forsgard, and R. V. Dyba, Phot. Sci. Tech. (2) 3, 162 (1956).

C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London) A235, 518 (1956).

1952 (1)

P. V. Meĭklyar, Doklady Akad. Nauk SSSR 85, 1255 (1952).

1950 (1)

1949 (1)

E. Katz, J. Chem. Phys. 17, 1132 (1949).
[Crossref]

1948 (1)

W. F. Berg, Trans. Faraday Soc. 44, 783 (1948).
[Crossref]

1931 (1)

T. Price, Phot. J. 71, 59 (1931).

1926 (1)

S. O. Rawling and J. W. Glassett, Phot. J. 66, 495 (1926).

Bayer, B. E.

Berg, W. F.

W. F. Berg, Trans. Faraday Soc. 44, 783 (1948).
[Crossref]

Brady, L. E.

Dyba, R. V.

R. W. Swenson, F. G. Forsgard, and R. V. Dyba, Phot. Sci. Tech. (2) 3, 162 (1956).

Forsgard, F. G.

R. W. Swenson, F. G. Forsgard, and R. V. Dyba, Phot. Sci. Tech. (2) 3, 162 (1956).

Glassett, J. W.

S. O. Rawling and J. W. Glassett, Phot. J. 66, 495 (1926).

Hamilton, J. F.

Hatchard, C. G.

C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London) A235, 518 (1956).

James, T. H.

T. H. James, W. Vanselow, and R. F. Quirk, Phot. Sci. Eng. 5, 216 (1961).

C. E. K. Mees and T. H. James, The Theory of the Photographic Process (Macmillan Co., New York, 1966), 3rd ed., Ch. 5.

Jones, J. E.

W. G. Lowe, J. E. Jones, and H. E. Roberts, in Fundamental Mechanisms of Photographic Sensitivity, Ed. by J. W. Mitchell (Butterworths Scientific Publications Ltd., London, 1951), p. 112.

Katz, E.

E. Katz, J. Chem. Phys. 17, 1132 (1949).
[Crossref]

Lowe, W. G.

W. G. Lowe, J. E. Jones, and H. E. Roberts, in Fundamental Mechanisms of Photographic Sensitivity, Ed. by J. W. Mitchell (Butterworths Scientific Publications Ltd., London, 1951), p. 112.

Mees, C. E. K.

C. E. K. Mees and T. H. James, The Theory of the Photographic Process (Macmillan Co., New York, 1966), 3rd ed., Ch. 5.

Meiklyar, P. V.

P. V. Meĭklyar, Doklady Akad. Nauk SSSR 85, 1255 (1952).

Parker, C. A.

C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London) A235, 518 (1956).

Price, T.

T. Price, Phot. J. 71, 59 (1931).

Quirk, R. F.

T. H. James, W. Vanselow, and R. F. Quirk, Phot. Sci. Eng. 5, 216 (1961).

Rawling, S. O.

S. O. Rawling and J. W. Glassett, Phot. J. 66, 495 (1926).

Roberts, H. E.

W. G. Lowe, J. E. Jones, and H. E. Roberts, in Fundamental Mechanisms of Photographic Sensitivity, Ed. by J. W. Mitchell (Butterworths Scientific Publications Ltd., London, 1951), p. 112.

Sheppard, S. E.

S. E. Sheppard and E. P. Wightman, in Ber. VIII Internat. Kongr. Phot., Dresden, 1931, J. Eggert and A. von Biehler, Eds. (J. Barth, Leipzig, 1932), p. 157.

Spencer, H. E.

Swenson, R. W.

R. W. Swenson, F. G. Forsgard, and R. V. Dyba, Phot. Sci. Tech. (2) 3, 162 (1956).

Vanselow, W.

T. H. James, W. Vanselow, and R. F. Quirk, Phot. Sci. Eng. 5, 216 (1961).

Webb, J. H.

Wightman, E. P.

S. E. Sheppard and E. P. Wightman, in Ber. VIII Internat. Kongr. Phot., Dresden, 1931, J. Eggert and A. von Biehler, Eds. (J. Barth, Leipzig, 1932), p. 157.

Doklady Akad. Nauk SSSR (1)

P. V. Meĭklyar, Doklady Akad. Nauk SSSR 85, 1255 (1952).

J. Chem. Phys. (1)

E. Katz, J. Chem. Phys. 17, 1132 (1949).
[Crossref]

J. Opt. Soc. Am. (3)

Phot. J. (2)

S. O. Rawling and J. W. Glassett, Phot. J. 66, 495 (1926).

T. Price, Phot. J. 71, 59 (1931).

Phot. Sci. Eng. (1)

T. H. James, W. Vanselow, and R. F. Quirk, Phot. Sci. Eng. 5, 216 (1961).

Phot. Sci. Tech. (2) (1)

R. W. Swenson, F. G. Forsgard, and R. V. Dyba, Phot. Sci. Tech. (2) 3, 162 (1956).

Proc. Roy. Soc. (London) (1)

C. G. Hatchard and C. A. Parker, Proc. Roy. Soc. (London) A235, 518 (1956).

Trans. Faraday Soc. (1)

W. F. Berg, Trans. Faraday Soc. 44, 783 (1948).
[Crossref]

Other (3)

S. E. Sheppard and E. P. Wightman, in Ber. VIII Internat. Kongr. Phot., Dresden, 1931, J. Eggert and A. von Biehler, Eds. (J. Barth, Leipzig, 1932), p. 157.

W. G. Lowe, J. E. Jones, and H. E. Roberts, in Fundamental Mechanisms of Photographic Sensitivity, Ed. by J. W. Mitchell (Butterworths Scientific Publications Ltd., London, 1951), p. 112.

C. E. K. Mees and T. H. James, The Theory of the Photographic Process (Macmillan Co., New York, 1966), 3rd ed., Ch. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of LIRF with and without acetone semicarbazone. Top curve without; bottom curve with, 20 g of acetone semicarbazone per silver mole.

Fig. 2
Fig. 2

Effect of acetone semicarbazone at 10−2-sec exposure time. Curve A without, curve B with, 20 g of acetone semicarbazone per silver mole.

Fig. 3
Fig. 3

Variation of LIRF curves with concentration of acetone semicarbazone. ● 20 g/Ag Mole, ■ 40 g/Ag Mole.

Fig. 4
Fig. 4

LIRF curves for three values of D/D max. 20 g of acetone semicarbazone per Ag Mole.

Fig. 5
Fig. 5

LIRF curve for 365-mμ exposure. 20 g of acetone semicarbazone per Ag Mole.

Fig. 6
Fig. 6

Rate of latent-image formation vs intensity of exposure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Br 2 + H 2 O = HOBr + H + + Br - .