Abstract

A fundamental limitation to the quality of wavefront reconstruction images is noise generated by the granular structure of the recording medium. Predictions of the signal-to-noise ratios that can be achieved in wavefront-reconstruction imaging are based on the checkerboard and overlapping circular-grain models of the recording medium. When the object consists of a multitude of resolvable point sources, the signal-tonoise ratio is found to be proportional to the space-bandwidth product of the recording medium; when the object is a diffuse surface, the signal-to-noise ratio is found to be independent of that space-bandwidth product. The quantum limit to signal-to-noise ratio is approachable only with a judicious choice of reference exposure and a recording medium free of other classical noise sources.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription