Abstract

New results are reported for the infrared optical parameters of Cd, Cu, Ga, Hf, Mg, Ni, Nb, Pd, white Sn, V, and W, at several temperatures. On the basis of the anomalous skin-effect theory, with diffuse scattering of electrons, electronic parameters are derived for wavelengths 10 and 15 μ, both for the metals examined by us, and, for Cu, Au, Pb, Ag, and white Sn, using results obtained elsewhere. These results are discussed on the basis of current models of photon-metal interaction and it is concluded that, for most metals, the wavelength dependence of the interaction frequency is not accounted for by these theories.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Lenham and D. M. Treherne, J. Opt. Soc. Am. 56, 1076 (1966).
    [Crossref]
  2. A. P. Lenham and D. M. Treherne, J. Opt. Soc. Am. 56, 752 (1966).
    [Crossref]
  3. J. R. Beattie, Phil. Mag. 46, 235 (1955).
  4. R. B. Dingle, Physica 19, 311 (1953).
    [Crossref]
  5. R. N. Gurzhi, Zh. Eksperim. i Teor. Fiz. 35, 965 (1958) [English transl.: Soviet Phys.—JETP 8, 673 (1959)].
  6. M. M. Kirillova and B. A. Charikov, Opt. i Spektroskopiya 17, 254 (1964) [English transl.: Opt. Spectry. 17, 134 (1964)]. Kirillova and Charikov’s own analysis yields results for τs and τp that do not fit their experiments if a self-consistent free-electron treatment is used and the behavior in the R′-X′ plane predicted from their values of τs, τd and N. A frequency dependence of one of their τ’s is still required to fit their results.
  7. T. Holstein, Phys. Rev. 96, 535 (1954).
    [Crossref]
  8. A. B. Pippard, in Optical Properties and Electronic Structure of Metals and Alloys, F. Abelès, Ed. (North-Holland Publishing Co., Amsterdam, 1966), p. 628.
  9. H. Y. Fan, Rept. Prog. Phys. 19, 107 (1956).
    [Crossref]
  10. Gurzhi’s graph is given by A. I. Golovashkin and G. P. Motulevich, Zh. Eksperim. i Teor. Fiz. 47, 64 (1964) [English transl.: Soviet Phys.—JETP 20, 44 (1965)].

1966 (2)

1964 (2)

M. M. Kirillova and B. A. Charikov, Opt. i Spektroskopiya 17, 254 (1964) [English transl.: Opt. Spectry. 17, 134 (1964)]. Kirillova and Charikov’s own analysis yields results for τs and τp that do not fit their experiments if a self-consistent free-electron treatment is used and the behavior in the R′-X′ plane predicted from their values of τs, τd and N. A frequency dependence of one of their τ’s is still required to fit their results.

Gurzhi’s graph is given by A. I. Golovashkin and G. P. Motulevich, Zh. Eksperim. i Teor. Fiz. 47, 64 (1964) [English transl.: Soviet Phys.—JETP 20, 44 (1965)].

1958 (1)

R. N. Gurzhi, Zh. Eksperim. i Teor. Fiz. 35, 965 (1958) [English transl.: Soviet Phys.—JETP 8, 673 (1959)].

1956 (1)

H. Y. Fan, Rept. Prog. Phys. 19, 107 (1956).
[Crossref]

1955 (1)

J. R. Beattie, Phil. Mag. 46, 235 (1955).

1954 (1)

T. Holstein, Phys. Rev. 96, 535 (1954).
[Crossref]

1953 (1)

R. B. Dingle, Physica 19, 311 (1953).
[Crossref]

Beattie, J. R.

J. R. Beattie, Phil. Mag. 46, 235 (1955).

Charikov, B. A.

M. M. Kirillova and B. A. Charikov, Opt. i Spektroskopiya 17, 254 (1964) [English transl.: Opt. Spectry. 17, 134 (1964)]. Kirillova and Charikov’s own analysis yields results for τs and τp that do not fit their experiments if a self-consistent free-electron treatment is used and the behavior in the R′-X′ plane predicted from their values of τs, τd and N. A frequency dependence of one of their τ’s is still required to fit their results.

Dingle, R. B.

R. B. Dingle, Physica 19, 311 (1953).
[Crossref]

Fan, H. Y.

H. Y. Fan, Rept. Prog. Phys. 19, 107 (1956).
[Crossref]

Golovashkin, A. I.

Gurzhi’s graph is given by A. I. Golovashkin and G. P. Motulevich, Zh. Eksperim. i Teor. Fiz. 47, 64 (1964) [English transl.: Soviet Phys.—JETP 20, 44 (1965)].

Gurzhi, R. N.

R. N. Gurzhi, Zh. Eksperim. i Teor. Fiz. 35, 965 (1958) [English transl.: Soviet Phys.—JETP 8, 673 (1959)].

Holstein, T.

T. Holstein, Phys. Rev. 96, 535 (1954).
[Crossref]

Kirillova, M. M.

M. M. Kirillova and B. A. Charikov, Opt. i Spektroskopiya 17, 254 (1964) [English transl.: Opt. Spectry. 17, 134 (1964)]. Kirillova and Charikov’s own analysis yields results for τs and τp that do not fit their experiments if a self-consistent free-electron treatment is used and the behavior in the R′-X′ plane predicted from their values of τs, τd and N. A frequency dependence of one of their τ’s is still required to fit their results.

Lenham, A. P.

Motulevich, G. P.

Gurzhi’s graph is given by A. I. Golovashkin and G. P. Motulevich, Zh. Eksperim. i Teor. Fiz. 47, 64 (1964) [English transl.: Soviet Phys.—JETP 20, 44 (1965)].

Pippard, A. B.

A. B. Pippard, in Optical Properties and Electronic Structure of Metals and Alloys, F. Abelès, Ed. (North-Holland Publishing Co., Amsterdam, 1966), p. 628.

Treherne, D. M.

J. Opt. Soc. Am. (2)

Opt. i Spektroskopiya (1)

M. M. Kirillova and B. A. Charikov, Opt. i Spektroskopiya 17, 254 (1964) [English transl.: Opt. Spectry. 17, 134 (1964)]. Kirillova and Charikov’s own analysis yields results for τs and τp that do not fit their experiments if a self-consistent free-electron treatment is used and the behavior in the R′-X′ plane predicted from their values of τs, τd and N. A frequency dependence of one of their τ’s is still required to fit their results.

Phil. Mag. (1)

J. R. Beattie, Phil. Mag. 46, 235 (1955).

Phys. Rev. (1)

T. Holstein, Phys. Rev. 96, 535 (1954).
[Crossref]

Physica (1)

R. B. Dingle, Physica 19, 311 (1953).
[Crossref]

Rept. Prog. Phys. (1)

H. Y. Fan, Rept. Prog. Phys. 19, 107 (1956).
[Crossref]

Zh. Eksperim. i Teor. Fiz. (2)

Gurzhi’s graph is given by A. I. Golovashkin and G. P. Motulevich, Zh. Eksperim. i Teor. Fiz. 47, 64 (1964) [English transl.: Soviet Phys.—JETP 20, 44 (1965)].

R. N. Gurzhi, Zh. Eksperim. i Teor. Fiz. 35, 965 (1958) [English transl.: Soviet Phys.—JETP 8, 673 (1959)].

Other (1)

A. B. Pippard, in Optical Properties and Electronic Structure of Metals and Alloys, F. Abelès, Ed. (North-Holland Publishing Co., Amsterdam, 1966), p. 628.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental results for Ga and white Sn in the R′-X′ plane. Wavelength symbols are: —× 8 μ, ○ 9 μ, + 10 μ, ♢ 11 μ, □ 12.5 μ, ● 13 μ, ■ 14 μ, ◆ 15 μ, ▼ 16 μ, △ 17 μ, ▽ 18 μ.

Fig. 2
Fig. 2

Experimental results for Mg and Cd in the R′-X′ plane. Symbols as in Fig. 1.

Fig. 3
Fig. 3

Experimental results for Hf, Ni, Nb, and Pd in the R′-X′ plane. Symbols as in Fig. 1.

Fig. 4
Fig. 4

Experimental results for Cu, V and W in the R′-X′ plane. Symbols as in Fig. 1.

Fig. 5
Fig. 5

Temperature dependence of τ−1 at 10 μ. θ is the Debye temperature and τθ the relaxation time at the Debye temperature. The measurements of each metal were normalized to the Gurzhi–Holstein curve using the room-temperature measurements. Solid line: Gurzhi–Holstein curve for ep interactions. Broken line: Classical conduction theory. ● Cd, □ Cu, × Ga, △ Au, △ Hf, ■ Pb, ♢ Mg, ▲ Ni, ○ Nb, ▼ Pd, ◐ Ag, + white Sn, ⊤ V, ϕ W.

Tables (1)

Tables Icon

Table I Summary of derived optical parameters. N is the number of electrons cm−3×10−22 and τ−1, the reciprocal of the relaxation time, is in seconds ×10−14. τdc−1 is the zero-frequency reciprocal relaxation time calculated using the room-temperature value for N.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ - 1 = τ e e - 1 + τ e p - 1 + τ e d - 1 ,
τ e e - 1 ( ω , T ) = τ e e c l - 1 + τ e e c l - 1 ( C / k T ) 2 λ - 2 ,