Abstract

The depolarization of linearly polarized light from a 0.6328 µ He-Ne laser backscattered from rough metallic surfaces and inhomogeneous dielectrics with known statistical properties has been measured. For the case where the wavelength λ is smaller than the rms height <i>h</i> and the scale size <i>l</i> of the metallic surfaces, or λ is smaller than the average size of the particles in the dielectrics, the results indicate that the backscattered depolarized component is caused only by multiple scattering. The polarized backscattered component arises from both single- and multiple-scattering processes. At normal incidence, the ratio of the depolarized- to-total backscattered power, <i>D/T</i>, is of the order of 10<sup>-3</sup> and 10<sup>-2</sup> for metals of characteristic slope <i>h/l</i>=0.1 and 0.14, respectively. This is at variance with predictions based on single-scatter theory that at normal incidence <i>D/T</i> should be zero for metals. As the angle of incidence ψ increases and the beam approaches grazing incidence, <i>D/T</i> rapidly approaches a value near unity and becomes relatively insensitive to the surface slope, <i>h/l.</i> For inhomogeneous dielectrics, <i>D/T</i> is the order of unity for 0≤ψ≤88°. The dependence of the normalized depolarized component, <i>D</i>(ψ)<i>D</i>(0), on ψ satisfies the empirical law [<i>D</i>(ψ)/<i>D</i>(0)] = cos<sup><i>m</i></sup>ψ, where <i>m</i> < 1 for metals and <i>m</i> ≃ 1 for inhomogeneous dielectrics.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription