Abstract

Contrast sensitivity for square-wave gratings of spatial frequencies between 0.44 and 33.2 cycles/deg was determined for exposure durations between 11 and 500 msec. The space-average luminance of the targets was kept constant at 10 mL, regardless of contrast, and equal to that of the pre- and post-exposure fields, which contained a cross-hair reticle to help maintain accommodation and fixation. At the longest exposure duration (500 msec) the contrast sensitivity function exhibited both the high- and the low-frequency declines described by previous investigators. At the briefest exposure duration tested (11 msec), the low-frequency decline of contrast sensitivity was virtually absent. Log contrast sensitivity improves with increasing exposure duration, but more for high-frequency than for low-frequency gratings. These results are compatible with the assumption that there is a time delay in the occurrence of inhibitory interactions in the retina.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. deLange, J. Opt. Soc. Am. 48, 777 (1958).
    [Crossref]
  2. F. Ratliff, Mach bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, Inc., San Francisco, 1965), Part I, Ch. 3, 4.
  3. E. M. Lowry and J. J. DePalma, J. Opt. Soc. Am. 51, 740 (1961).
    [Crossref] [PubMed]
  4. O. Bryngdahl, J. Opt. Soc. Am. 56, 81 (1966).
  5. M. Davidson and T. N. Cornsweet, J. Opt. Soc. Am. 54, 580A (1964).
  6. O. H. Schade, J. Opt. Soc. Am. 46, 721 (1956).
    [Crossref] [PubMed]
  7. J. J. DePalma and E. M. Lowry, J. Opt. Soc. Am. 52, 328 (1962).
    [Crossref]
  8. F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581A (1964).
  9. D. G. Green and F. W. Campbell, J. Opt. Soc. Am. 55, 1154 (1965).
    [Crossref]
  10. F. W. Campbell and D. G. Green, J. Physiol. 181, 576 (1965).
  11. A. S. Patel, J. Opt. Soc. Am. 56, 689 (1966).
    [Crossref] [PubMed]
  12. J. W. Coltman, J. Opt. Soc. Am. 44, 468 (1954).
    [Crossref]
  13. H. A. W. Schober and R. Hilz, J. Opt. Soc. Am. 55, 1081 (1965).
  14. G. B. Wetherill and H. Levitt, Brit. J. Math. Stat. Psych. 18, 1 (1965).
    [Crossref]
  15. The standard error of the mean of six determinations is 10% (0.04 log units).
  16. J. G. Robson, J. Opt. Soc. Am. 56, 1141 (1966).
    [Crossref]
  17. G. Westheimer and F. W. Campbell, J. Opt. Soc. Am. 52, 1040 (1962).
    [Crossref] [PubMed]
  18. H. B. Barlow, R. F. Hugh, and S. W. Kuffler, J. Physiol. 137, 339 (1957).
  19. H. B. Barlow and W. R. Levick, J. Physiol. 178, 477 (1965).
  20. U. K. Keesey, J. Opt. Soc. Am. 50, 769 (1960).
    [Crossref] [PubMed]
  21. J. W. Coltman and A. E. Anderson, Proc. IRE 48, 858 (May1960).
    [Crossref]

1966 (3)

1965 (5)

D. G. Green and F. W. Campbell, J. Opt. Soc. Am. 55, 1154 (1965).
[Crossref]

H. B. Barlow and W. R. Levick, J. Physiol. 178, 477 (1965).

F. W. Campbell and D. G. Green, J. Physiol. 181, 576 (1965).

H. A. W. Schober and R. Hilz, J. Opt. Soc. Am. 55, 1081 (1965).

G. B. Wetherill and H. Levitt, Brit. J. Math. Stat. Psych. 18, 1 (1965).
[Crossref]

1964 (2)

M. Davidson and T. N. Cornsweet, J. Opt. Soc. Am. 54, 580A (1964).

F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581A (1964).

1962 (2)

1961 (1)

1960 (2)

U. K. Keesey, J. Opt. Soc. Am. 50, 769 (1960).
[Crossref] [PubMed]

J. W. Coltman and A. E. Anderson, Proc. IRE 48, 858 (May1960).
[Crossref]

1958 (1)

1957 (1)

H. B. Barlow, R. F. Hugh, and S. W. Kuffler, J. Physiol. 137, 339 (1957).

1956 (1)

1954 (1)

Anderson, A. E.

J. W. Coltman and A. E. Anderson, Proc. IRE 48, 858 (May1960).
[Crossref]

Barlow, H. B.

H. B. Barlow and W. R. Levick, J. Physiol. 178, 477 (1965).

H. B. Barlow, R. F. Hugh, and S. W. Kuffler, J. Physiol. 137, 339 (1957).

Bryngdahl, O.

O. Bryngdahl, J. Opt. Soc. Am. 56, 81 (1966).

Campbell, F. W.

D. G. Green and F. W. Campbell, J. Opt. Soc. Am. 55, 1154 (1965).
[Crossref]

F. W. Campbell and D. G. Green, J. Physiol. 181, 576 (1965).

F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581A (1964).

G. Westheimer and F. W. Campbell, J. Opt. Soc. Am. 52, 1040 (1962).
[Crossref] [PubMed]

Coltman, J. W.

J. W. Coltman and A. E. Anderson, Proc. IRE 48, 858 (May1960).
[Crossref]

J. W. Coltman, J. Opt. Soc. Am. 44, 468 (1954).
[Crossref]

Cornsweet, T. N.

M. Davidson and T. N. Cornsweet, J. Opt. Soc. Am. 54, 580A (1964).

Davidson, M.

M. Davidson and T. N. Cornsweet, J. Opt. Soc. Am. 54, 580A (1964).

deLange, H.

DePalma, J. J.

Green, D. G.

F. W. Campbell and D. G. Green, J. Physiol. 181, 576 (1965).

D. G. Green and F. W. Campbell, J. Opt. Soc. Am. 55, 1154 (1965).
[Crossref]

Hilz, R.

H. A. W. Schober and R. Hilz, J. Opt. Soc. Am. 55, 1081 (1965).

Hugh, R. F.

H. B. Barlow, R. F. Hugh, and S. W. Kuffler, J. Physiol. 137, 339 (1957).

Keesey, U. K.

Kuffler, S. W.

H. B. Barlow, R. F. Hugh, and S. W. Kuffler, J. Physiol. 137, 339 (1957).

Levick, W. R.

H. B. Barlow and W. R. Levick, J. Physiol. 178, 477 (1965).

Levitt, H.

G. B. Wetherill and H. Levitt, Brit. J. Math. Stat. Psych. 18, 1 (1965).
[Crossref]

Lowry, E. M.

Patel, A. S.

Ratliff, F.

F. Ratliff, Mach bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, Inc., San Francisco, 1965), Part I, Ch. 3, 4.

Robson, J. G.

J. G. Robson, J. Opt. Soc. Am. 56, 1141 (1966).
[Crossref]

F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581A (1964).

Schade, O. H.

Schober, H. A. W.

H. A. W. Schober and R. Hilz, J. Opt. Soc. Am. 55, 1081 (1965).

Westheimer, G.

Wetherill, G. B.

G. B. Wetherill and H. Levitt, Brit. J. Math. Stat. Psych. 18, 1 (1965).
[Crossref]

Brit. J. Math. Stat. Psych. (1)

G. B. Wetherill and H. Levitt, Brit. J. Math. Stat. Psych. 18, 1 (1965).
[Crossref]

J. Opt. Soc. Am. (14)

J. Physiol. (3)

H. B. Barlow, R. F. Hugh, and S. W. Kuffler, J. Physiol. 137, 339 (1957).

H. B. Barlow and W. R. Levick, J. Physiol. 178, 477 (1965).

F. W. Campbell and D. G. Green, J. Physiol. 181, 576 (1965).

Proc. IRE (1)

J. W. Coltman and A. E. Anderson, Proc. IRE 48, 858 (May1960).
[Crossref]

Other (2)

The standard error of the mean of six determinations is 10% (0.04 log units).

F. Ratliff, Mach bands: Quantitative Studies on Neural Networks in the Retina (Holden-Day, Inc., San Francisco, 1965), Part I, Ch. 3, 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the apparatus. For explanation, see text.

Fig. 2
Fig. 2

Psychometric functions for grating-resolution. Observer D.K. ▲0.7 cycles/deg, ●1.75 cycles/deg, ▼17.5 cycles/deg.

Fig. 3
Fig. 3

Psychometric functions for grating-resolution. Observer S.K. ●0.7 cycles/deg, ▲1.75 cycles/deg, ▼17.5 cycles/deg.

Fig. 4
Fig. 4

Psychometric functions for grating-resolution for observer S.K. Empty symbols, percent responses correct on trials when gratings were oriented 135°; filled symbols, percent responses correct on trials when gratings were oriented 45°. ●○—0.7 cycles/deg, ▲△—1.75 cycles/deg, ▼▽—17.5 cycles/deg.

Fig. 5
Fig. 5

Contrast sensitivity as a function of spatial frequency with exposures of 51 msec. The four symbols represent different observers. The arrows are for contrast sensitivity with bipartite fields.

Fig. 6
Fig. 6

Contrast sensitivity as a function of spatial with three different exposure durations. Observer S.K.

Fig. 7
Fig. 7

Contrast sensitivity as a function of spatial frequency with three different exposure durations. Observer D.K.

Fig. 8
Fig. 8

The ratio of contrast sensitivity with 11 and 51-msec exposures to contrast sensitivity with 500-msec exposures, as a function of spatial frequency. Empty circles, observer D.K.; filled circles, observer S.K.

Fig. 9
Fig. 9

Contrast sensitivity as a function of exposure duration with two spatial frequencies. Empty circles, observer D.K.; filled circles, observer S.K.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

f ( x ) = L ( 1 + m ) , 0 x p 0 / 2 f ( x ) - L ( 1 - m ) , P 0 / 2 x p 0 .
f ( x ) = L [ 1 + 4 m π k = 1 sin [ ( 2 k - 1 ) 2 π ν 0 x ] 2 k - 1 ] .
M ( x ) = [ f ( x ) - ν 0 0 p 0 f ( x ) d x ] / [ ν 0 0 p 0 f ( x ) d x ] .
M ( x ) = 4 m π k = 1 sin [ ( 2 k - 1 ) 2 π ν 0 x ] 2 k - 1 .
M ( x ) = 4 m π k = 1 A [ ν 0 ( 2 k - 1 ) ] 2 k - 1 sin [ ( 2 k - 1 ) 2 π ν 0 x ] ,
M 1 ( ν 0 ) = 4 m / π [ A ( ν 0 ) - A ( 3 ν 0 ) / 3 + A ( 5 ν 0 ) / 5 - ] .
M 2 ( ν 0 ) = rms M ( x ) = m M 2 ( ν 0 ) = rms M ( x ) = 2 2 m / π { [ A ( ν 0 ) ] 2 + [ A ( 3 ν 0 ) / 3 ] 2 + [ A ( 5 ν 0 ) / 5 ] 5 + } .
k = m t ( ν 0 ) · g ( ν 0 ) - log [ m t ( ν 0 ) ] = - log k + log [ g ( ν 0 ) ] .