Abstract

Two methods of measuring foveal spectral sensitivity were compared: (1) the absolute-threshold method and (2) a homochromatic-contrast method. In the second method, the subject saw a fixed-contrast homochromatic stimulus consisting of a steady background field and a superimposed 32% increment flash. The overall radiance level of the stimulus was varied systematically to determine the minimum radiance required to detect the flash. The spectral-sensitivity curve obtained by this method was somewhat narrower than the curve obtained by the absolute-threshold method. The homochromatic-contrast method was also used for a retinal region 8° above the fovea. A curve resembling the common photopic curve was obtained. It is concluded that the homochromatic-contrast method may serve as a useful addition to the standard methods of spectral-sensitivity measurement.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Stiles, Proc. Natl. Acad. Sci. 45, 100 (1959).
    [CrossRef]
  2. G. G. Heath, Science 128, 775 (1958).
    [CrossRef] [PubMed]
  3. E. P. Johnson, L. A. Riggs, and A. M. L. Schick, in Clinical Electroretinography Supplement to Vision Research, Ed. by H. M. Burian and J. H. Jacobson (Pergamon Press, London, New York, 1966), p. 75.
  4. W. S. Stiles, Proc. Roy. Soc. (London) 127-B, 64 (1937).
  5. S. Hecht, J. C. Peskin, and M. Patt, J. Gen. Physiol. 22, 7 (1938).
  6. D. Dillon and R. T. Zegers, J. Opt. Soc. Am. 48, 877 (1958).
    [CrossRef] [PubMed]
  7. Y. Hsia and C. H. Graham, Proc. Natl. Acad. Sci. 38, 80 (1952).
    [CrossRef]
  8. L. M. Hurvich and D. Jameson, J. Opt. Soc. Am. 43, 485 (1953).
    [CrossRef] [PubMed]
  9. H. G. Sperling and W. G. Lewis, J. Opt. Soc. Am. 49, 983 (1959).
    [CrossRef] [PubMed]
  10. H. G. Sperling and Y. Hsia, J. Opt. Soc. Am. 47, 707 (1957).
    [CrossRef] [PubMed]
  11. W. S. Stiles, Proc. Phys. Soc. (London) 58, 329 (1944).
    [CrossRef]
  12. L. C. Thomson, J. Physiol. 112, 114 (1951).
  13. G. Wald, Science 101, 653 (1945).
    [CrossRef] [PubMed]
  14. G. Wald, Science 145, 1007 (1964).
    [CrossRef] [PubMed]
  15. W. D. Wright, J. Opt. Soc. Am. 42, 509 (1952).
    [CrossRef] [PubMed]
  16. S. Guth, J. Opt. Soc. Am. 55, 718 (1965).
    [CrossRef]
  17. R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
    [CrossRef] [PubMed]
  18. R. M. Boynton, S. R. Das, and J. Gardiner, J. Opt. Soc. Am. 56, 539 (1966).
    [CrossRef]
  19. It would be of interest to compare the extrafoveal results of the dark-adaptation method with those of the contrast-detection method, using the same subjects, to see if the relation between the two extrafoveal curves is the same as that found between the two types of foveal curves. This is in fact the case for a comparison across subjects which can be made with our parafoveal curves and the 8° parafoveal curve obtained by Wald13 with the dark-adaptation method.

1966 (1)

R. M. Boynton, S. R. Das, and J. Gardiner, J. Opt. Soc. Am. 56, 539 (1966).
[CrossRef]

1965 (1)

1964 (2)

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[CrossRef] [PubMed]

G. Wald, Science 145, 1007 (1964).
[CrossRef] [PubMed]

1959 (2)

1958 (2)

1957 (1)

1953 (1)

1952 (2)

Y. Hsia and C. H. Graham, Proc. Natl. Acad. Sci. 38, 80 (1952).
[CrossRef]

W. D. Wright, J. Opt. Soc. Am. 42, 509 (1952).
[CrossRef] [PubMed]

1951 (1)

L. C. Thomson, J. Physiol. 112, 114 (1951).

1945 (1)

G. Wald, Science 101, 653 (1945).
[CrossRef] [PubMed]

1944 (1)

W. S. Stiles, Proc. Phys. Soc. (London) 58, 329 (1944).
[CrossRef]

1938 (1)

S. Hecht, J. C. Peskin, and M. Patt, J. Gen. Physiol. 22, 7 (1938).

1937 (1)

W. S. Stiles, Proc. Roy. Soc. (London) 127-B, 64 (1937).

Boynton, R. M.

R. M. Boynton, S. R. Das, and J. Gardiner, J. Opt. Soc. Am. 56, 539 (1966).
[CrossRef]

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[CrossRef] [PubMed]

Das, S. R.

R. M. Boynton, S. R. Das, and J. Gardiner, J. Opt. Soc. Am. 56, 539 (1966).
[CrossRef]

Dillon, D.

Gardiner, J.

R. M. Boynton, S. R. Das, and J. Gardiner, J. Opt. Soc. Am. 56, 539 (1966).
[CrossRef]

Graham, C. H.

Y. Hsia and C. H. Graham, Proc. Natl. Acad. Sci. 38, 80 (1952).
[CrossRef]

Guth, S.

Heath, G. G.

G. G. Heath, Science 128, 775 (1958).
[CrossRef] [PubMed]

Hecht, S.

S. Hecht, J. C. Peskin, and M. Patt, J. Gen. Physiol. 22, 7 (1938).

Hsia, Y.

H. G. Sperling and Y. Hsia, J. Opt. Soc. Am. 47, 707 (1957).
[CrossRef] [PubMed]

Y. Hsia and C. H. Graham, Proc. Natl. Acad. Sci. 38, 80 (1952).
[CrossRef]

Hurvich, L. M.

Ikeda, M.

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[CrossRef] [PubMed]

Jameson, D.

Johnson, E. P.

E. P. Johnson, L. A. Riggs, and A. M. L. Schick, in Clinical Electroretinography Supplement to Vision Research, Ed. by H. M. Burian and J. H. Jacobson (Pergamon Press, London, New York, 1966), p. 75.

Lewis, W. G.

Patt, M.

S. Hecht, J. C. Peskin, and M. Patt, J. Gen. Physiol. 22, 7 (1938).

Peskin, J. C.

S. Hecht, J. C. Peskin, and M. Patt, J. Gen. Physiol. 22, 7 (1938).

Riggs, L. A.

E. P. Johnson, L. A. Riggs, and A. M. L. Schick, in Clinical Electroretinography Supplement to Vision Research, Ed. by H. M. Burian and J. H. Jacobson (Pergamon Press, London, New York, 1966), p. 75.

Schick, A. M. L.

E. P. Johnson, L. A. Riggs, and A. M. L. Schick, in Clinical Electroretinography Supplement to Vision Research, Ed. by H. M. Burian and J. H. Jacobson (Pergamon Press, London, New York, 1966), p. 75.

Sperling, H. G.

Stiles, W. S.

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[CrossRef] [PubMed]

W. S. Stiles, Proc. Natl. Acad. Sci. 45, 100 (1959).
[CrossRef]

W. S. Stiles, Proc. Phys. Soc. (London) 58, 329 (1944).
[CrossRef]

W. S. Stiles, Proc. Roy. Soc. (London) 127-B, 64 (1937).

Thomson, L. C.

L. C. Thomson, J. Physiol. 112, 114 (1951).

Wald, G.

G. Wald, Science 145, 1007 (1964).
[CrossRef] [PubMed]

G. Wald, Science 101, 653 (1945).
[CrossRef] [PubMed]

Wright, W. D.

Zegers, R. T.

J. Gen. Physiol. (1)

S. Hecht, J. C. Peskin, and M. Patt, J. Gen. Physiol. 22, 7 (1938).

J. Opt. Soc. Am. (7)

J. Physiol. (1)

L. C. Thomson, J. Physiol. 112, 114 (1951).

Proc. Natl. Acad. Sci. (2)

Y. Hsia and C. H. Graham, Proc. Natl. Acad. Sci. 38, 80 (1952).
[CrossRef]

W. S. Stiles, Proc. Natl. Acad. Sci. 45, 100 (1959).
[CrossRef]

Proc. Phys. Soc. (London) (1)

W. S. Stiles, Proc. Phys. Soc. (London) 58, 329 (1944).
[CrossRef]

Proc. Roy. Soc. (London) (1)

W. S. Stiles, Proc. Roy. Soc. (London) 127-B, 64 (1937).

Science (3)

G. Wald, Science 101, 653 (1945).
[CrossRef] [PubMed]

G. Wald, Science 145, 1007 (1964).
[CrossRef] [PubMed]

G. G. Heath, Science 128, 775 (1958).
[CrossRef] [PubMed]

Vision Res. (1)

R. M. Boynton, M. Ikeda, and W. S. Stiles, Vision Res. 4, 87 (1964).
[CrossRef] [PubMed]

Other (2)

It would be of interest to compare the extrafoveal results of the dark-adaptation method with those of the contrast-detection method, using the same subjects, to see if the relation between the two extrafoveal curves is the same as that found between the two types of foveal curves. This is in fact the case for a comparison across subjects which can be made with our parafoveal curves and the 8° parafoveal curve obtained by Wald13 with the dark-adaptation method.

E. P. Johnson, L. A. Riggs, and A. M. L. Schick, in Clinical Electroretinography Supplement to Vision Research, Ed. by H. M. Burian and J. H. Jacobson (Pergamon Press, London, New York, 1966), p. 75.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Hypothetical results for extrafoveal threshold measurements in which the wavelengths of the increment field and the background field are identical. The interrupted parts of the curves represent the assumed continuation of the scotopic contrast-threshold function. The dashed horizontal line indicates a criterion-contrast ratio of 32%. Numbers to the upper left indicate the stimulus wavelengths.

Fig. 2
Fig. 2

Diagram of the optical system. Circles on the optic axis indicate the location of filament images. (See text for details.)

Fig. 3
Fig. 3

Foveal spectral-sensitivity curves for absolute-threshold detection ●, and for homochromatic-contrast detection ■. Subject DAB.

Fig. 4
Fig. 4

Foveal spectral-sensitivity curves for absolute-threshold detection ● and for homochromatic-contrast detection ■. Subject PW.

Fig. 5
Fig. 5

Comparison of absolute-threshold and homochromatic-contrast detection spectral-sensitivity curves. N0 is the radiance required at absolute threshold. N is the background radiance required for detection of a 32% contrast increment. Solid line is the mean of the pooled data for both subjects. ●: data for subject DAB, ▲: data for PW.

Fig. 6
Fig. 6

Spectral-sensitivity curves for homochromatic-contrast detection obtained at 8° above the fovea. Data for PW ■ have been displaced downward by 1.0 log unit for clarity. Data for DAB: ●.