Abstract

The restoration of optical images, as well as the unfolding of spectroscopic and other data that have been convolved with a window function or an instrumental impulse response, can be viewed as the solution of an integral equation. Solution of such an integral equation when the data are corrupted by noise or experimental error is treated as the problem of finding an estimate that is a linear functional of the data and minimizes the mean squared error between the true solution and itself. The estimate depends on assumptions about the spectral densities of the images and the noise, the choice of which is discussed. Coherent optical processing and digital processing are described.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (45)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription