Abstract

A high-resolution spectroscopic study has been made of the emission in the 4.3-μ region of electrically excited CO2–N2 and CO2–N2–He plasmas. CO2-rich plasmas emit an intense spectrum in which P-branch and low-J R-branch lines appear in absorption. The R-branch band heads (J ≅ 120) appear as emission features in such spectra and there is a region of mixed absorption and emission. CO2–N2 plasmas which would sustain laser oscillations in a suitable cavity exhibit emission lines and derive most of their intensity from the fundamental and four hot bands of the naturally abundant CO2 isotope. With the mixture ratio and pressure carefully adjusted, the CO2–N2–He plasma emits lines of the 0003–0002 and 0002–0001 bands. Bands from 13C16O2, 12C16O18O, and 13C16O18O, which are prominent in the CO2 absorption spectra, do not appear in the plasma spectra. The molecular constants ω30, x033, and y333 are derived from bands in the 00υ3–00(υ3 − 1) sequence.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Legay and P. Barchewitz, Compt. Rend. 256, 5305 (1963).
  2. F. Legay, J. Phys. (France) 25, 999 (1964).
    [Crossref]
  3. L. O. Hocker, M. A. Kovacs, C. K. Rhodes, G. W. Flynn, and A. Javan, Phys. Rev. Letters 17, 233 (1966).
    [Crossref]
  4. Sold by the Welch Scientific Co., 1515 Sedgewick St., Chicago, Ill.
  5. T. K. McCubbin, J. A. Lowenthal, and H. R. Gordon, Appl. Opt. 4, 711 (1965).
    [Crossref]
  6. K. N. Rao, R. Oberly, Y. H. Hahn, and T. K. McCubbin, J. Mol. Spectry, Vol.  25 (1968).
  7. C. P. Courtoy, Ann. Soc. Sci. Bruxelles 73, No. I, 5 (1959).
  8. A. Fayt, C. P. Courtoy, and M. de Hemptine, Ann. Soc. Sci. Bruxelles 79, No. III, 233–235 (1965).
  9. G. Herzberg and L. Herzberg, J. Opt. Soc. Am. 43, 1037 (1953).
    [Crossref]

1968 (1)

K. N. Rao, R. Oberly, Y. H. Hahn, and T. K. McCubbin, J. Mol. Spectry, Vol.  25 (1968).

1966 (1)

L. O. Hocker, M. A. Kovacs, C. K. Rhodes, G. W. Flynn, and A. Javan, Phys. Rev. Letters 17, 233 (1966).
[Crossref]

1965 (2)

T. K. McCubbin, J. A. Lowenthal, and H. R. Gordon, Appl. Opt. 4, 711 (1965).
[Crossref]

A. Fayt, C. P. Courtoy, and M. de Hemptine, Ann. Soc. Sci. Bruxelles 79, No. III, 233–235 (1965).

1964 (1)

F. Legay, J. Phys. (France) 25, 999 (1964).
[Crossref]

1963 (1)

F. Legay and P. Barchewitz, Compt. Rend. 256, 5305 (1963).

1959 (1)

C. P. Courtoy, Ann. Soc. Sci. Bruxelles 73, No. I, 5 (1959).

1953 (1)

Barchewitz, P.

F. Legay and P. Barchewitz, Compt. Rend. 256, 5305 (1963).

Courtoy, C. P.

A. Fayt, C. P. Courtoy, and M. de Hemptine, Ann. Soc. Sci. Bruxelles 79, No. III, 233–235 (1965).

C. P. Courtoy, Ann. Soc. Sci. Bruxelles 73, No. I, 5 (1959).

de Hemptine, M.

A. Fayt, C. P. Courtoy, and M. de Hemptine, Ann. Soc. Sci. Bruxelles 79, No. III, 233–235 (1965).

Fayt, A.

A. Fayt, C. P. Courtoy, and M. de Hemptine, Ann. Soc. Sci. Bruxelles 79, No. III, 233–235 (1965).

Flynn, G. W.

L. O. Hocker, M. A. Kovacs, C. K. Rhodes, G. W. Flynn, and A. Javan, Phys. Rev. Letters 17, 233 (1966).
[Crossref]

Gordon, H. R.

Hahn, Y. H.

K. N. Rao, R. Oberly, Y. H. Hahn, and T. K. McCubbin, J. Mol. Spectry, Vol.  25 (1968).

Herzberg, G.

Herzberg, L.

Hocker, L. O.

L. O. Hocker, M. A. Kovacs, C. K. Rhodes, G. W. Flynn, and A. Javan, Phys. Rev. Letters 17, 233 (1966).
[Crossref]

Javan, A.

L. O. Hocker, M. A. Kovacs, C. K. Rhodes, G. W. Flynn, and A. Javan, Phys. Rev. Letters 17, 233 (1966).
[Crossref]

Kovacs, M. A.

L. O. Hocker, M. A. Kovacs, C. K. Rhodes, G. W. Flynn, and A. Javan, Phys. Rev. Letters 17, 233 (1966).
[Crossref]

Legay, F.

F. Legay, J. Phys. (France) 25, 999 (1964).
[Crossref]

F. Legay and P. Barchewitz, Compt. Rend. 256, 5305 (1963).

Lowenthal, J. A.

McCubbin, T. K.

K. N. Rao, R. Oberly, Y. H. Hahn, and T. K. McCubbin, J. Mol. Spectry, Vol.  25 (1968).

T. K. McCubbin, J. A. Lowenthal, and H. R. Gordon, Appl. Opt. 4, 711 (1965).
[Crossref]

Oberly, R.

K. N. Rao, R. Oberly, Y. H. Hahn, and T. K. McCubbin, J. Mol. Spectry, Vol.  25 (1968).

Rao, K. N.

K. N. Rao, R. Oberly, Y. H. Hahn, and T. K. McCubbin, J. Mol. Spectry, Vol.  25 (1968).

Rhodes, C. K.

L. O. Hocker, M. A. Kovacs, C. K. Rhodes, G. W. Flynn, and A. Javan, Phys. Rev. Letters 17, 233 (1966).
[Crossref]

Ann. Soc. Sci. Bruxelles (2)

C. P. Courtoy, Ann. Soc. Sci. Bruxelles 73, No. I, 5 (1959).

A. Fayt, C. P. Courtoy, and M. de Hemptine, Ann. Soc. Sci. Bruxelles 79, No. III, 233–235 (1965).

Appl. Opt. (1)

Compt. Rend. (1)

F. Legay and P. Barchewitz, Compt. Rend. 256, 5305 (1963).

J. Mol. Spectry (1)

K. N. Rao, R. Oberly, Y. H. Hahn, and T. K. McCubbin, J. Mol. Spectry, Vol.  25 (1968).

J. Opt. Soc. Am. (1)

J. Phys. (France) (1)

F. Legay, J. Phys. (France) 25, 999 (1964).
[Crossref]

Phys. Rev. Letters (1)

L. O. Hocker, M. A. Kovacs, C. K. Rhodes, G. W. Flynn, and A. Javan, Phys. Rev. Letters 17, 233 (1966).
[Crossref]

Other (1)

Sold by the Welch Scientific Co., 1515 Sedgewick St., Chicago, Ill.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The emission spectrum of a CO2–N2 plasma from 2302 to 2316 cm−1 (below). Note that the emission features closely match the absorption lines (above.) The 13C16O2R26 and R28 lines and the 12C16O18O P24 line, which is between the 001–000 P40 and the 0111–0010 P28 lines, are unmistakably absent in the emission spectrum. Approximate CO2–N2 pressures: 0.4 and 2.0 torr.

Fig. 2
Fig. 2

The emission spectrum of CO2–N2 plasma from 2268 to 2279 cm−1 (below) shown along with the absorption spectrum for the same region (above). Approximate CO2–N2 pressures: 0.4 and 2.0 torr.

Fig. 3
Fig. 3

The emission spectrum of a CO1–N2–He plasma with conditions adjusted so that the 003–002 and 002–001 bands appear. Approximate CO2–N2–He pressures: 0.5, 1.2, and 15.5 torr.

Fig. 4
Fig. 4

A plot of (G00υ ÷ υ) − x330υ = Y(υ) vs υ. With x330 properly chosen, this curve would be a parabola with parameters: Y(υ) = ω30 + y333υ2. Circles show the results of the present research. The square is for Courtoy’s 003 level (Ref. 7), and the triangle is for a correction of that result for slit curvature (Ref. 8). The × represents the 005 level of Herzberg and Herzberg (Ref. 9).

Tables (1)

Tables Icon

Table I Band origins, energy levels and vibrational constants for 12C16O2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G 00 υ 3 = ω 3 0 υ 3 + x 33 0 υ 3 2 + y 333 υ 3 3 .