Abstract

An area at the center of the human fovea, subtending a visual angle of only 7–8 min and hence hardly larger than the fixation area, is blue-blind in the sense of almost or entirely lacking blue-sensitive cones. This is a matter of foveal topography, not size of field, for in fields of this size elsewhere in the fovea or in the parafovea, blue-sensitive cones are well represented. The blue-cone system falls in sensitivity from the border of the photopic zone—the functionally all-cone area—to a minimum, usually to extinction, at its center. Other features of foveal topography oppose this trend: the density of cones rises and the macular pigmentation thins out toward the center of the fovea. Also the red- and green-cone systems display the opposite gradient; their sensitivities decline regularly from the center toward the borders of the fovea and beyond.

Tritanopia, though the rarest form of congenital color-blindness, is thus a regular feature of the center of the normal fovea. The existence of two neutral points in this condition, in the yellow and violet, has its basis in the observation that the luminosity curves of the red- and green-sensitive cones, drawn so as to cross in the yellow, cross again or fuse in the violet region. It is suggested that the blue-blindness of the fixation area is a final step in the general withdrawal of image vision from the short wavelengths of the spectrum, for which the chromatic aberration of the eye is greatest. The blue-blindness of the fixation area, taken together with the red-green blindness of more-or-less concentric zones of the near periphery, and the total colorblindness of the far periphery, raises the possibility that various zones of the normal retina display all the major forms of colorblindness. Trichromic vision is normal only in the broad, central annulus of the retina, which alone is ordinarily tested. Some instances of defective color vision may be similarly localized. The problems of both normal and defective color vision involve not only the presence or absence of certain visual pigments and types of cone, but their spatial distributions on the retinal surface, and their neural connections.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. König and E. Köttgen, Sitzber. Akad. Wiss.Berlin, 1894, p. 577, A. König, Gesammelte Abhandlungen zur Physiologischen Optik (J. A. Barth, Leipzig, 1903), p. 338.
  2. I am greatly indebted to Professor Russell Carpenter of Tufts University for permission to use this photomicrograph.
  3. S. L. Polyak, The Retina (Univ. Chicago Press, 1941), pp. 197–199, 447–449.
  4. A. Rochon-Duvigneaud, Les Yeux el la Vision des Vertébrés (Masson et Cie., Paris, 1943), pp. 16–27.
  5. G. Wald, (a)Science 101, 653 (1945). (b)Doc. Ophthalmol. 3, 94 (1949).
  6. Y. Le Grand, Optique Physiologique, Vol. 3: L’Espace Visuel (Editors Revue d’OptiqueParis, 1956), pp. 175–177.
  7. A. König, Sitzber. Akad. Wiss. Berlin,  718 (1897); also in A. König, Gesammelte Abhandlungen (J. A. Barth, Leipzig, 1903), p. 396.
  8. E. N. Willmer, Nature 153, 774 (1944).
    [Crossref]
  9. E. N. Willmer, J. Theoret. Biol. 1, 141 (1962).
    [Crossref]
  10. Note the comment by G. L. Walls and R. W. Matthews, New Means of Studying Color Blindness and Normal Foveal Color Vision [Univ. Calif. (Berkeley) Publ. Psychol.7, No. 1, 158 (1952)]: “The central tetartanopic spot demonstrated in the normal fovea by König, Willmer, Wright, and others probably coincides with ⋯ the rod-free area.”
  11. E. N. Willmer and W. D. Wright, Nature 156, 119 (1945).
    [Crossref]
  12. W. S. Stiles(a)Proc. Roy. Soc. (London) B127, 64 (1939). (b)Ned. Tydschr. Natuurk. 15, 125 (1949). (c)Proc. Natl. Acad. Sci. (U. S.) 45, 100 (1959).
  13. E. Auerbach and G. Wald(a)Science 120, 401 (1954). (b)Am. J. Ophthalmol. 39, No. 2, II, 24 (1955).
  14. W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
    [Crossref] [PubMed]
  15. P. K. Brown and G. Wald, Science 144, 45 (1964).
    [Crossref] [PubMed]
  16. G. Wald, Science 145, 1007 (1964).
    [Crossref] [PubMed]
  17. G. Wald, Proc. Natl. Acad. Sci. (U. S.) 55, 1347 (1966).
    [Crossref]
  18. In a later discussion of the blue-blindness of the “central fovea,” Wright re-defined the latter, specifically in this connection, as the central area 20–30 min in subtense [W. D. Wright, Researches on Normal and Defective Colour Vision (C. V. Mosby, St. Louis, 1947), p. 338]. Through an apparent misunderstanding of Wright’s remarks at this point, le Grand ascribed these dimensions also to König’s experiments, though I can find no indication of this in König’s papers [Y. Le Grand, Light, Colour, and Vision (Chapman and Hall, London, 1957), pp. 209, 336].
  19. E. N. Willmer, J. Physiol. (London) 110, 377 (1949); cf. pp.378–380.
  20. E. N. Willmer, Retinal Structure and Colour Vision (Cambridge Univ. Press1946), plate facing p. 144.
  21. Also to some degree the duration of stimulus: cf. D. O. Weitzman and J. A. S. Kinney, J. Opt. Soc. Am. 57, 665 (1967).
    [Crossref] [PubMed]
  22. J. E. Purkinje, Physiological Examination of the Organ of Vision and the Skin (Univ. Bratislava, Breslau, 1823). Translated in H. J. John, Jan Evangelista Purkvne (Am. Phil. Soc., Philadelphia, 1959), p. 54.
  23. H. Aubert, Physiologie der Netzhaut (E. Morgenstern, Breslau, 1865), pp. 108–124.
  24. H. Hartridge(a)Nature 155, 391 (1945). (b)Nature 155, 657 (1945). (c)Phil Trans. Roy. Soc. (London) B232, 519 (1947).
  25. L. C. Thomson and W. D. Wright, J. Physiol. (London) 105, 316 (1947).
  26. The specifications of the colored background fields are as follows. Field diameter 3.5°, with the test field close to its center. (1) Yellow background, to isolate the blue-sensitive pigment: white field brightness 5060 millilamberts and color temperature 2100°K, passed through Corning filter 3482plus Jena heat filter KG 1. (2) Purple background to isolate the green-sensitive pigment: white field brightness 20 650 millilamberts and color temperature 2400°K, passed through Wratten filter 35. (3) Blue background to isolate the red-sensitive pigment: white field brightness 16 000 millilamberts and color temperature 2300°K, passed through Wratten filter 47plus Jena BG18.
  27. F. H. G. Pitt, Proc. Roy. Soc. (London) B132, 101 (1944).
    [Crossref]
  28. W. D. Wright, J. Opt. Soc. Am. 42, 509 (1952).
    [Crossref] [PubMed]
  29. G. Østerberg, Acta Ophthalmol. 13, Suppl. 6 (1935). It should be remembered that this work, unique and beautiful as it is, and grateful as we are for it, was pieced out with fragments of a single human retina, and further studies of this kind may be expected to reveal considerable variation from Østerberg’s Counts.
  30. P. K. Brown and G. Wald, Nature200, 37 (1963); also unpublished observations.
    [Crossref] [PubMed]
  31. M. Schultze, Zur Analomie uni Physiologie der Retina (Max Cohen, Bonn, 1866), Section I; see especially Plate 6, Fig. 1. This monograph appears as a special issue of Arch. Mikr. Anat. 2 (1866).
  32. Y. Le Grand, Light, Colour and Vision (John Wiley & Sons, Inc., N. Y., 1957), pp. 241–244.
  33. G. S. Brindley(a)J. Physiol. (London) 122, 332 (1953). (b)J. Physiol. 124, 400 (1954). (c) with J. J. DuCroz and W. A. H. Rushton, J. Physiol. 183, 497 (1966). (d)Physiology of the Retina and Visual Pathway (Edward Arnold, London, 1960), pp. 235–237.
  34. H. Kalmus, Ann. Human Genetics 20, 39 (1955).
    [Crossref]
  35. M. von Vintschgau, Pflüger’s Arch. Ges. Physiol. 57, 191 (1894).
    [Crossref]
  36. E. Hering, Pfluger’s Arch. Ges. Physiol. 57, 308 (1894).
    [Crossref]
  37. A. König and C. Dieterici, Z. Psych. Physiol. Sinnesorg. 4, 241 (1892). In A. König, Gesammelte Abhandlungen (A. Barth, Leipzig, 1903), p. 298.
  38. I. Newton, Opticks, Fourth Edition (William Innys, London, 1730). Reprint edition (J. B. Cohen, Ed.) (Dover Publications, Inc., New York, 1952): Book I, Part 2, Prop. 8, p. 165.
  39. G. Wald and D. R. Griffin, J. Opt. Soc. Am. 37, 321 (1947).
    [Crossref] [PubMed]
  40. G. Wald, Sci. Am. 183, 32 (Aug.1950).
    [Crossref]
  41. This term is used here to include both the protanopic and deuteranopic states, in default of information that would permit a choice. In such red-green blind areas when fully developed, it is reported that reds and greens are confused, and that the only color sensations that persist are blue and yellow.
  42. A. Fick, in L. Hermann (Ed.), Handbuch der Physiologie (F. C. W. Vogel, Leipzig, 1879), Vol. 3, part I, p. 206.
  43. J. D. Moreland and A. Cruz, Optica Acta 6, 117 (1959). These authors find “strong dichromatic tendencies” at 25–30 deg and monochromacy at 40–50 deg from the fixation point.
    [Crossref]
  44. W. Nagel, Z. Sinnesphysiol. 44, 5 (1910).
  45. W. Jaeger and K. Kroker, Klin. Monatsbl. Augenheilk. 121, 445 (1952).

1967 (1)

1966 (1)

G. Wald, Proc. Natl. Acad. Sci. (U. S.) 55, 1347 (1966).
[Crossref]

1964 (3)

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

P. K. Brown and G. Wald, Science 144, 45 (1964).
[Crossref] [PubMed]

G. Wald, Science 145, 1007 (1964).
[Crossref] [PubMed]

1962 (1)

E. N. Willmer, J. Theoret. Biol. 1, 141 (1962).
[Crossref]

1959 (1)

J. D. Moreland and A. Cruz, Optica Acta 6, 117 (1959). These authors find “strong dichromatic tendencies” at 25–30 deg and monochromacy at 40–50 deg from the fixation point.
[Crossref]

1955 (1)

H. Kalmus, Ann. Human Genetics 20, 39 (1955).
[Crossref]

1952 (2)

W. D. Wright, J. Opt. Soc. Am. 42, 509 (1952).
[Crossref] [PubMed]

W. Jaeger and K. Kroker, Klin. Monatsbl. Augenheilk. 121, 445 (1952).

1950 (1)

G. Wald, Sci. Am. 183, 32 (Aug.1950).
[Crossref]

1949 (1)

E. N. Willmer, J. Physiol. (London) 110, 377 (1949); cf. pp.378–380.

1947 (2)

L. C. Thomson and W. D. Wright, J. Physiol. (London) 105, 316 (1947).

G. Wald and D. R. Griffin, J. Opt. Soc. Am. 37, 321 (1947).
[Crossref] [PubMed]

1945 (1)

E. N. Willmer and W. D. Wright, Nature 156, 119 (1945).
[Crossref]

1944 (2)

E. N. Willmer, Nature 153, 774 (1944).
[Crossref]

F. H. G. Pitt, Proc. Roy. Soc. (London) B132, 101 (1944).
[Crossref]

1935 (1)

G. Østerberg, Acta Ophthalmol. 13, Suppl. 6 (1935). It should be remembered that this work, unique and beautiful as it is, and grateful as we are for it, was pieced out with fragments of a single human retina, and further studies of this kind may be expected to reveal considerable variation from Østerberg’s Counts.

1910 (1)

W. Nagel, Z. Sinnesphysiol. 44, 5 (1910).

1897 (1)

A. König, Sitzber. Akad. Wiss. Berlin,  718 (1897); also in A. König, Gesammelte Abhandlungen (J. A. Barth, Leipzig, 1903), p. 396.

1894 (2)

M. von Vintschgau, Pflüger’s Arch. Ges. Physiol. 57, 191 (1894).
[Crossref]

E. Hering, Pfluger’s Arch. Ges. Physiol. 57, 308 (1894).
[Crossref]

1892 (1)

A. König and C. Dieterici, Z. Psych. Physiol. Sinnesorg. 4, 241 (1892). In A. König, Gesammelte Abhandlungen (A. Barth, Leipzig, 1903), p. 298.

Aubert, H.

H. Aubert, Physiologie der Netzhaut (E. Morgenstern, Breslau, 1865), pp. 108–124.

Auerbach, E.

E. Auerbach and G. Wald(a)Science 120, 401 (1954). (b)Am. J. Ophthalmol. 39, No. 2, II, 24 (1955).

Brindley, G. S.

G. S. Brindley(a)J. Physiol. (London) 122, 332 (1953). (b)J. Physiol. 124, 400 (1954). (c) with J. J. DuCroz and W. A. H. Rushton, J. Physiol. 183, 497 (1966). (d)Physiology of the Retina and Visual Pathway (Edward Arnold, London, 1960), pp. 235–237.

Brown, P. K.

P. K. Brown and G. Wald, Science 144, 45 (1964).
[Crossref] [PubMed]

P. K. Brown and G. Wald, Nature200, 37 (1963); also unpublished observations.
[Crossref] [PubMed]

Cruz, A.

J. D. Moreland and A. Cruz, Optica Acta 6, 117 (1959). These authors find “strong dichromatic tendencies” at 25–30 deg and monochromacy at 40–50 deg from the fixation point.
[Crossref]

Dieterici, C.

A. König and C. Dieterici, Z. Psych. Physiol. Sinnesorg. 4, 241 (1892). In A. König, Gesammelte Abhandlungen (A. Barth, Leipzig, 1903), p. 298.

Dobelle, W. H.

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

Fick, A.

A. Fick, in L. Hermann (Ed.), Handbuch der Physiologie (F. C. W. Vogel, Leipzig, 1879), Vol. 3, part I, p. 206.

Griffin, D. R.

Hartridge, H.

H. Hartridge(a)Nature 155, 391 (1945). (b)Nature 155, 657 (1945). (c)Phil Trans. Roy. Soc. (London) B232, 519 (1947).

Hering, E.

E. Hering, Pfluger’s Arch. Ges. Physiol. 57, 308 (1894).
[Crossref]

Jaeger, W.

W. Jaeger and K. Kroker, Klin. Monatsbl. Augenheilk. 121, 445 (1952).

Kalmus, H.

H. Kalmus, Ann. Human Genetics 20, 39 (1955).
[Crossref]

Kinney, J. A. S.

König, A.

A. König, Sitzber. Akad. Wiss. Berlin,  718 (1897); also in A. König, Gesammelte Abhandlungen (J. A. Barth, Leipzig, 1903), p. 396.

A. König and C. Dieterici, Z. Psych. Physiol. Sinnesorg. 4, 241 (1892). In A. König, Gesammelte Abhandlungen (A. Barth, Leipzig, 1903), p. 298.

A. König and E. Köttgen, Sitzber. Akad. Wiss.Berlin, 1894, p. 577, A. König, Gesammelte Abhandlungen zur Physiologischen Optik (J. A. Barth, Leipzig, 1903), p. 338.

Köttgen, E.

A. König and E. Köttgen, Sitzber. Akad. Wiss.Berlin, 1894, p. 577, A. König, Gesammelte Abhandlungen zur Physiologischen Optik (J. A. Barth, Leipzig, 1903), p. 338.

Kroker, K.

W. Jaeger and K. Kroker, Klin. Monatsbl. Augenheilk. 121, 445 (1952).

Le Grand, Y.

Y. Le Grand, Light, Colour and Vision (John Wiley & Sons, Inc., N. Y., 1957), pp. 241–244.

Y. Le Grand, Optique Physiologique, Vol. 3: L’Espace Visuel (Editors Revue d’OptiqueParis, 1956), pp. 175–177.

MacNichol, E. F.

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

Marks, W. B.

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

Moreland, J. D.

J. D. Moreland and A. Cruz, Optica Acta 6, 117 (1959). These authors find “strong dichromatic tendencies” at 25–30 deg and monochromacy at 40–50 deg from the fixation point.
[Crossref]

Nagel, W.

W. Nagel, Z. Sinnesphysiol. 44, 5 (1910).

Newton, I.

I. Newton, Opticks, Fourth Edition (William Innys, London, 1730). Reprint edition (J. B. Cohen, Ed.) (Dover Publications, Inc., New York, 1952): Book I, Part 2, Prop. 8, p. 165.

Østerberg, G.

G. Østerberg, Acta Ophthalmol. 13, Suppl. 6 (1935). It should be remembered that this work, unique and beautiful as it is, and grateful as we are for it, was pieced out with fragments of a single human retina, and further studies of this kind may be expected to reveal considerable variation from Østerberg’s Counts.

Pitt, F. H. G.

F. H. G. Pitt, Proc. Roy. Soc. (London) B132, 101 (1944).
[Crossref]

Polyak, S. L.

S. L. Polyak, The Retina (Univ. Chicago Press, 1941), pp. 197–199, 447–449.

Purkinje, J. E.

J. E. Purkinje, Physiological Examination of the Organ of Vision and the Skin (Univ. Bratislava, Breslau, 1823). Translated in H. J. John, Jan Evangelista Purkvne (Am. Phil. Soc., Philadelphia, 1959), p. 54.

Rochon-Duvigneaud, A.

A. Rochon-Duvigneaud, Les Yeux el la Vision des Vertébrés (Masson et Cie., Paris, 1943), pp. 16–27.

Schultze, M.

M. Schultze, Zur Analomie uni Physiologie der Retina (Max Cohen, Bonn, 1866), Section I; see especially Plate 6, Fig. 1. This monograph appears as a special issue of Arch. Mikr. Anat. 2 (1866).

Stiles, W. S.

W. S. Stiles(a)Proc. Roy. Soc. (London) B127, 64 (1939). (b)Ned. Tydschr. Natuurk. 15, 125 (1949). (c)Proc. Natl. Acad. Sci. (U. S.) 45, 100 (1959).

Thomson, L. C.

L. C. Thomson and W. D. Wright, J. Physiol. (London) 105, 316 (1947).

von Vintschgau, M.

M. von Vintschgau, Pflüger’s Arch. Ges. Physiol. 57, 191 (1894).
[Crossref]

Wald, G.

G. Wald, Proc. Natl. Acad. Sci. (U. S.) 55, 1347 (1966).
[Crossref]

P. K. Brown and G. Wald, Science 144, 45 (1964).
[Crossref] [PubMed]

G. Wald, Science 145, 1007 (1964).
[Crossref] [PubMed]

G. Wald, Sci. Am. 183, 32 (Aug.1950).
[Crossref]

G. Wald and D. R. Griffin, J. Opt. Soc. Am. 37, 321 (1947).
[Crossref] [PubMed]

E. Auerbach and G. Wald(a)Science 120, 401 (1954). (b)Am. J. Ophthalmol. 39, No. 2, II, 24 (1955).

G. Wald, (a)Science 101, 653 (1945). (b)Doc. Ophthalmol. 3, 94 (1949).

P. K. Brown and G. Wald, Nature200, 37 (1963); also unpublished observations.
[Crossref] [PubMed]

Weitzman, D. O.

Willmer, E. N.

E. N. Willmer, J. Theoret. Biol. 1, 141 (1962).
[Crossref]

E. N. Willmer, J. Physiol. (London) 110, 377 (1949); cf. pp.378–380.

E. N. Willmer and W. D. Wright, Nature 156, 119 (1945).
[Crossref]

E. N. Willmer, Nature 153, 774 (1944).
[Crossref]

E. N. Willmer, Retinal Structure and Colour Vision (Cambridge Univ. Press1946), plate facing p. 144.

Wright, W. D.

W. D. Wright, J. Opt. Soc. Am. 42, 509 (1952).
[Crossref] [PubMed]

L. C. Thomson and W. D. Wright, J. Physiol. (London) 105, 316 (1947).

E. N. Willmer and W. D. Wright, Nature 156, 119 (1945).
[Crossref]

In a later discussion of the blue-blindness of the “central fovea,” Wright re-defined the latter, specifically in this connection, as the central area 20–30 min in subtense [W. D. Wright, Researches on Normal and Defective Colour Vision (C. V. Mosby, St. Louis, 1947), p. 338]. Through an apparent misunderstanding of Wright’s remarks at this point, le Grand ascribed these dimensions also to König’s experiments, though I can find no indication of this in König’s papers [Y. Le Grand, Light, Colour, and Vision (Chapman and Hall, London, 1957), pp. 209, 336].

Acta Ophthalmol. (1)

G. Østerberg, Acta Ophthalmol. 13, Suppl. 6 (1935). It should be remembered that this work, unique and beautiful as it is, and grateful as we are for it, was pieced out with fragments of a single human retina, and further studies of this kind may be expected to reveal considerable variation from Østerberg’s Counts.

Ann. Human Genetics (1)

H. Kalmus, Ann. Human Genetics 20, 39 (1955).
[Crossref]

J. Opt. Soc. Am. (3)

J. Physiol. (London) (2)

L. C. Thomson and W. D. Wright, J. Physiol. (London) 105, 316 (1947).

E. N. Willmer, J. Physiol. (London) 110, 377 (1949); cf. pp.378–380.

J. Theoret. Biol. (1)

E. N. Willmer, J. Theoret. Biol. 1, 141 (1962).
[Crossref]

Klin. Monatsbl. Augenheilk. (1)

W. Jaeger and K. Kroker, Klin. Monatsbl. Augenheilk. 121, 445 (1952).

Nature (2)

E. N. Willmer, Nature 153, 774 (1944).
[Crossref]

E. N. Willmer and W. D. Wright, Nature 156, 119 (1945).
[Crossref]

Optica Acta (1)

J. D. Moreland and A. Cruz, Optica Acta 6, 117 (1959). These authors find “strong dichromatic tendencies” at 25–30 deg and monochromacy at 40–50 deg from the fixation point.
[Crossref]

Pfluger’s Arch. Ges. Physiol. (1)

E. Hering, Pfluger’s Arch. Ges. Physiol. 57, 308 (1894).
[Crossref]

Pflüger’s Arch. Ges. Physiol. (1)

M. von Vintschgau, Pflüger’s Arch. Ges. Physiol. 57, 191 (1894).
[Crossref]

Proc. Natl. Acad. Sci. (U. S.) (1)

G. Wald, Proc. Natl. Acad. Sci. (U. S.) 55, 1347 (1966).
[Crossref]

Proc. Roy. Soc. (London) (1)

F. H. G. Pitt, Proc. Roy. Soc. (London) B132, 101 (1944).
[Crossref]

Sci. Am. (1)

G. Wald, Sci. Am. 183, 32 (Aug.1950).
[Crossref]

Science (3)

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

P. K. Brown and G. Wald, Science 144, 45 (1964).
[Crossref] [PubMed]

G. Wald, Science 145, 1007 (1964).
[Crossref] [PubMed]

Sitzber. Akad. Wiss. Berlin (1)

A. König, Sitzber. Akad. Wiss. Berlin,  718 (1897); also in A. König, Gesammelte Abhandlungen (J. A. Barth, Leipzig, 1903), p. 396.

Z. Psych. Physiol. Sinnesorg. (1)

A. König and C. Dieterici, Z. Psych. Physiol. Sinnesorg. 4, 241 (1892). In A. König, Gesammelte Abhandlungen (A. Barth, Leipzig, 1903), p. 298.

Z. Sinnesphysiol. (1)

W. Nagel, Z. Sinnesphysiol. 44, 5 (1910).

Other (22)

This term is used here to include both the protanopic and deuteranopic states, in default of information that would permit a choice. In such red-green blind areas when fully developed, it is reported that reds and greens are confused, and that the only color sensations that persist are blue and yellow.

A. Fick, in L. Hermann (Ed.), Handbuch der Physiologie (F. C. W. Vogel, Leipzig, 1879), Vol. 3, part I, p. 206.

I. Newton, Opticks, Fourth Edition (William Innys, London, 1730). Reprint edition (J. B. Cohen, Ed.) (Dover Publications, Inc., New York, 1952): Book I, Part 2, Prop. 8, p. 165.

P. K. Brown and G. Wald, Nature200, 37 (1963); also unpublished observations.
[Crossref] [PubMed]

M. Schultze, Zur Analomie uni Physiologie der Retina (Max Cohen, Bonn, 1866), Section I; see especially Plate 6, Fig. 1. This monograph appears as a special issue of Arch. Mikr. Anat. 2 (1866).

Y. Le Grand, Light, Colour and Vision (John Wiley & Sons, Inc., N. Y., 1957), pp. 241–244.

G. S. Brindley(a)J. Physiol. (London) 122, 332 (1953). (b)J. Physiol. 124, 400 (1954). (c) with J. J. DuCroz and W. A. H. Rushton, J. Physiol. 183, 497 (1966). (d)Physiology of the Retina and Visual Pathway (Edward Arnold, London, 1960), pp. 235–237.

The specifications of the colored background fields are as follows. Field diameter 3.5°, with the test field close to its center. (1) Yellow background, to isolate the blue-sensitive pigment: white field brightness 5060 millilamberts and color temperature 2100°K, passed through Corning filter 3482plus Jena heat filter KG 1. (2) Purple background to isolate the green-sensitive pigment: white field brightness 20 650 millilamberts and color temperature 2400°K, passed through Wratten filter 35. (3) Blue background to isolate the red-sensitive pigment: white field brightness 16 000 millilamberts and color temperature 2300°K, passed through Wratten filter 47plus Jena BG18.

J. E. Purkinje, Physiological Examination of the Organ of Vision and the Skin (Univ. Bratislava, Breslau, 1823). Translated in H. J. John, Jan Evangelista Purkvne (Am. Phil. Soc., Philadelphia, 1959), p. 54.

H. Aubert, Physiologie der Netzhaut (E. Morgenstern, Breslau, 1865), pp. 108–124.

H. Hartridge(a)Nature 155, 391 (1945). (b)Nature 155, 657 (1945). (c)Phil Trans. Roy. Soc. (London) B232, 519 (1947).

Note the comment by G. L. Walls and R. W. Matthews, New Means of Studying Color Blindness and Normal Foveal Color Vision [Univ. Calif. (Berkeley) Publ. Psychol.7, No. 1, 158 (1952)]: “The central tetartanopic spot demonstrated in the normal fovea by König, Willmer, Wright, and others probably coincides with ⋯ the rod-free area.”

A. König and E. Köttgen, Sitzber. Akad. Wiss.Berlin, 1894, p. 577, A. König, Gesammelte Abhandlungen zur Physiologischen Optik (J. A. Barth, Leipzig, 1903), p. 338.

I am greatly indebted to Professor Russell Carpenter of Tufts University for permission to use this photomicrograph.

S. L. Polyak, The Retina (Univ. Chicago Press, 1941), pp. 197–199, 447–449.

A. Rochon-Duvigneaud, Les Yeux el la Vision des Vertébrés (Masson et Cie., Paris, 1943), pp. 16–27.

G. Wald, (a)Science 101, 653 (1945). (b)Doc. Ophthalmol. 3, 94 (1949).

Y. Le Grand, Optique Physiologique, Vol. 3: L’Espace Visuel (Editors Revue d’OptiqueParis, 1956), pp. 175–177.

W. S. Stiles(a)Proc. Roy. Soc. (London) B127, 64 (1939). (b)Ned. Tydschr. Natuurk. 15, 125 (1949). (c)Proc. Natl. Acad. Sci. (U. S.) 45, 100 (1959).

E. Auerbach and G. Wald(a)Science 120, 401 (1954). (b)Am. J. Ophthalmol. 39, No. 2, II, 24 (1955).

In a later discussion of the blue-blindness of the “central fovea,” Wright re-defined the latter, specifically in this connection, as the central area 20–30 min in subtense [W. D. Wright, Researches on Normal and Defective Colour Vision (C. V. Mosby, St. Louis, 1947), p. 338]. Through an apparent misunderstanding of Wright’s remarks at this point, le Grand ascribed these dimensions also to König’s experiments, though I can find no indication of this in König’s papers [Y. Le Grand, Light, Colour, and Vision (Chapman and Hall, London, 1957), pp. 209, 336].

E. N. Willmer, Retinal Structure and Colour Vision (Cambridge Univ. Press1946), plate facing p. 144.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Section of a human retina through the fovea, showing its dimensions in vivo (allowing 15% shrinkage in the section), in mm and in degrees of visual angle. The central fovea subtends a visual angle of about 4.5°; the photopic area in which under all conditions vision is dominated by cones, 1.5°–1.7°; and the central region, where the cones are longest and finest, contains the fixation area that, with allowance for unavoidable fixation movements of the eye, subtends about 5 min. (For this microscopic section I am indebted to Professor Russell Carpenter of Tufts University.)

Fig. 2
Fig. 2

Contributions of the blue-, green,- and red-sensitive cones (B,G,R) to the over-all spectral sensitivity of the photopic area. The long-wavelength inflection on the blue-function is not an intrinsic part of it, but represents residual sensitivities of the highly light-adapted red- and green-mechanisms. The B, G, and R curves are from measurements on subject R. H. The over-all sensitivity is a composite of classic measurements of the photopic luminosity function. All measurements are expressed as log relative sensitivity (log 1/threshold), in terms of the relative numbers of photons per flash at each wavelength, incident on the cornea of the eye (from Wald17).

Fig. 3
Fig. 3

Spectral sensitivities of the dark-adapted fovea (D) and of the individual color mechanisms (B, G, R) in subject R. H. Centrally fixated fields. Left: 62 field. Right: 8.5 field. Reducing the size of field in the dark-adapted fovea from about 1° to 1 2 ° , 1 4 °, and 1 8 ° causes a selective loss of sensitivity in the region of the blue-receptor. The points and solid line show the data for the 8.5-min field; the curves for the other fields have been fitted together with this at long wavelengths, where all of these curves have the same shape. In the 8.5-min field, G and R are well represented, G having lost very little sensitivity, R somewhat more; but only a trace of B remains (λmax440 mμ) together with residues of G and R that account for almost as high a maximum near 540 mμ.

Fig. 4
Fig. 4

Spectral sensitivities of centrally fixated foveal fields, in subject E. S. Left: 62 field. Right: 8.5 field. Reducing the size of test field from about 1° to 1 8 ° causes a selective loss of blue-sensitivity in the dark-adapted fovea (D); the green-sensitive cones (G) drop slightly in sensitivity, the red-sensitive cones (R) somewhat more; but the blue-sensitive cones (B) have ceased to function in the 8.5-min field, the entire curve involving only the residual functions of R and G.

Fig. 5
Fig. 5

Effects of decreasing the sizes of centrally fixated foveal fields on the spectral sensitivity curves measured on a bright yellow background. Left: Subject E. S.; center: C. C.; right: J. L. In the 1° field, the sensitivity curves are dominated by the blue-sensitive cones (λmax440–450 mμ), the broad inflection at 540–560 mμ representing residual sensitivities of the red- and green-sensitive cones. As the size of field is decreased, the blue-cone sensitivity declines precipitously, and in these subjects has vanished from the 1 8 ° field. Meanwhile, the sensitivities of the long-wavelength receptors define only slightly, so that what began in the 1 ° field as a minor inflection ends in the 1 8 ° field as the entire function.

Fig. 6
Fig. 6

Spectral sensitivity measured in a 7-min field fixated either centrally or at two positions, 7/16° from the fixation point, in the yellow-adapted fovea. In this subject R. H. the centrally fixated field shows a small blue-cone maximum (ca. 440 mμ) beside an almost equally high maximum near 550 mμ owing to the residual sensitivities of the red- and green-receptors (compare Fig. 3, right). Moving this field to 7/16° from the fixation point greatly increases the sensitivity of the blue-cones, while somewhat depressing that due to the red- and green-cones (compare Fig. 11). The blue-blindness of the fixation area is a feature of foveal topography, and not of size of field.

Fig. 7
Fig. 7

Spectral sensitivities of the blue-, green-, and red-sensitive cones (B, G, R) in 62 (left) and 8.5 (right) test fields centered 8° below the fixation point; subject E. S. This is outside the macula, and in a region relatively homogeneous in cone population, so that differences of sensitivity are caused primarily by the changes of size of the field. When the test field is narrowed, G and R decline in sensitivity almost equally, B very much more. This is the usual result. Comparison with centrally fixated fields in the same subject (Fig. 4) shows that moving the test areas into the parafovea has lowered the sensitivities of G and R, while simultaneously increasing the sensitivity of B, even in the 1° field. This again is a typical result. In the 1 8 ° field, the blue-cones, which were absent from the centrally fixated field in this subject, continue to be well represented in the parafovea.

Fig. 8
Fig. 8

Spectral sensitivities of the blue-, green-, and red-sensitive cones (B, G, R) in test fields subtending about 62 (left) and and 8.5 (right) centered 8° below the fixation point (subject R. H.). Decreasing the size of the field decreases the sensitivities of G and R about equally, but that of B much less. This is a quite unusual result, not duplicated in all other parafoveal areas even of this subject. Comparison with Fig. 3 shows that moving the 1° field from the fovea to the parafovea causes a loss of sensitivity of G and R, but almost no change in B; this again is unusual, and is probably related to special characteristics of this observer, discussed in the text. The most important point is that whereas a 1 8 ° field centrally fixated displays only a residue of blue-cone function, in the parafovea it retains a high blue-cone sensitivity.

Fig. 9
Fig. 9

Distribution of cones and rods from the border of the photopic zone of the human retina into the parafovea, according to Østerberg.29 The rapid decline of density of cones probably accounts for the decline of sensitivity of the red- and green-cone populations; but owing to relief from macular pigmentation and perhaps other factors, the blue-cone sensitivity tends to hold its own or increase somewhat. By 8° from the fixation point, the cone population is so small that, according to these counts, a 1 8 ° field contains only about 11 cones.

Fig. 10
Fig. 10

Distribution of cones in the photopic zone of the fovea, according to Østerberg.29 The decline of density of cones toward the borders of the photopic zone is paralleled by decreases of sensitivity of the red- and green-cone populations; but the blue-cones exhibit the reverse gradient; their sensitivity rises from a minimum at the center of the fovea to the borders of the photopic zone and sometimes beyond (compare Fig. 11).

Fig. 11
Fig. 11

Spectral sensitivities of the blue-, green- and red-sensitive cones (B, G, R) in a 7.5-min field fixated centrally or 7/16° from the fixation point. When the field is moved from the center toward the edge of the photopic zone, G and R decline in sensitivity, whereas B rises markedly (subject C. C).

Fig. 12
Fig. 12

Above: Relation between log diameter of the test field and log sensitivity for centrally fixated fields measured at three wavelengths in the dark adapted fovea. Observer E. S. Decreasing the size of field causes a larger decline of sensitivity to blue light than to longer wavelengths. Below: similar measurements made with the fovea adapted to bright colored backgrounds which isolate the separate responses of the blue-sensitive cones (440 mμ on yellow background), green-sensitive cones (540 mμ on purple background), and red-sensitive cones (640 mμ on blue background). On the yellow background, measurements are also included at 540 mμ, where the responses are due mainly to green-sensitive cones. Decreasing the size of field causes a very small decline of sensitivity of the green-sensitive cones, a larger decline for the red-sensitive cones, and a very much larger decline for the blue-sensitive cones. The sensitivity at 440 mμ for the smallest field is not due to blue-sensitive cones at all, but to the residual sensitivities of the red- and green-sensitive cones (compare Figs. 4 and 5).

Fig. 13
Fig. 13

Variation of log sensitivity with log diameter of test fields centered 8° below the fixation point. Observer E. S. The decrease of sensitivity with size of field tends to be slightly greater for the red-sensitive cones (640 mμ on blue background) than for the green-sensitive cones (540 mμ on purple), and much steeper for the blue-sensitive cones (440 mμ on yellow). The measurements at 540 mμ on the yellow background represent some combination of the highly light-adapted red- and green-cones (dashed line). In such peripheral areas, in which the receptor population is relatively homogeneous, the area-threshold relations of the red-and green-cones are steeper, of the blue-cones less steep, than in the fovea (compare Fig. 12).

Fig. 14
Fig. 14

The “flight from the blue”: the withdrawal of pattern vision and fixation from the short-wavelength region of the spectrum in which the chromatic aberration of the eye is greatest. Below: axial chromatic aberration of the human eye; averages of measurements on 14 subjects (from Wald and Griffin39). From 750 to 550 mμ the chromatic aberration increases slowly and almost linearly; but then rises more and more steeply as the wavelength shortens further. Above: Luminosity curves. Pattern resolution depends primarily upon the cones, and reaches its peak at the center of the fovea. The steps by which highest pattern resolution is achieved are accompanied by a continuous shift of sensitivity away from short wavelengths. They include: (a) The shift from rod to cone vision, transposing the luminosity function bodily toward the red (intrinsic luminosity curves shown here are as though measured at the retinal surface), (b) The exclusion of the near ultraviolet from the whole retina by the yellow lens and other ocular tissues, (c) The further filtering out of much of the violet and blue in the central retina by the macular pigmentation, (d) The blue-blindness of the fixation area.

Tables (2)

Tables Icon

Table I Visual angles at which test fields look colored (from Aubert, 1865, pp. III, 115).23 Direct visien. Fields: two squares separated by an equal space on a white or black background; or one square on a black background.

Tables Icon

Table II Change of log sensitivity of the blue-, green-, and red-sensitive systems, on changing the location of a 1 8 ° field from the center of the fovea (the fixation area) to the edge of the 1° area, i.e., 26 min from the fixation point. Each of these measurements was made upon the appropriate colored background for isolating one of the color-vision systems.