Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Peck, J. Opt. Soc. Am. 38, 1015 (1948).
    [Crossref] [PubMed]
  2. E. R. Peck, J. Opt. Soc. Am. 52, 253 (1962).
    [Crossref]
  3. N. Karube and E. Yamaka, J. Appl. Phys. (Japan) 6, 364 (1967).
    [Crossref]
  4. P. R. Yoder, J. Opt. Soc. Am. 48, 496 (1958).
    [Crossref]
  5. K. N. Chandler, J. Opt. Soc. Am. 50, 203 (1960).
    [Crossref]

1967 (1)

N. Karube and E. Yamaka, J. Appl. Phys. (Japan) 6, 364 (1967).
[Crossref]

1962 (1)

1960 (1)

1958 (1)

1948 (1)

Chandler, K. N.

Karube, N.

N. Karube and E. Yamaka, J. Appl. Phys. (Japan) 6, 364 (1967).
[Crossref]

Peck, E. R.

Yamaka, E.

N. Karube and E. Yamaka, J. Appl. Phys. (Japan) 6, 364 (1967).
[Crossref]

Yoder, P. R.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Deflection of the emergent ray as a function of the direction of the incident ray on a cube-corner prism. The curve designated as θ(k)/2|δ| is that of the ray which is incident on a pair of sextants where the minimization is performed, while the curve designated as θ(i,j)/2|δ| is that of the ray for which the minimization is not carried out.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

S i = S 0 i + Δ S i ,
Δ S i · S 0 j + S 0 j · Δ S i = δ i j .
R ( m + 1 ) = R ( m ) - 2 ( R ( m ) · S ) S ,
R 1 ( i j k ) = - I + 2 [ I · ( S 0 i + Δ S i ) ] ( S 0 i + Δ S i )
R 2 ( i j k ) = - I + 2 Σ m - i j ( I · S m ) S m - 4 [ I · ( S 0 i + Δ S i ) ] ( S 0 j + Δ S j )
R 3 ( i j k ) = - I + 2 Σ m - i j k ( I · S m ) S m - 4 { δ i j [ I · ( S 0 i + Δ S i ) ] × ( S 0 j + Δ S j ) + δ j k [ I · ( S 0 j + Δ S j ) ] ( S 0 k + Δ S k ) + δ i k [ I · ( S 0 i + Δ S i ) ] ( S 0 k + Δ S k ) } ,             ( S i S j S k ) .
Σ m ( I · S m ) S m = I + Σ p < q δ p q [ I · ( S 0 p + Δ p ) ( S 0 q + Δ S q ) + I · ( S 0 q + Δ S q ) ( S 0 p + Δ S p ) ] .
R 3 ( i j k ) = I + 2 [ δ i j ( A j S 0 i - A i S 0 j ) + δ j k ( A k S 0 j - A j S 0 k ) + δ i k ( A k S 0 i - A i S 0 k ) ] ,
θ ( i j k ) = 2 [ ( δ i k A i + δ j k A j ) 2 + ( δ i j A j + δ i k A k ) 2 + ( δ i j A i - δ j k A k ) 2 ] 1 2
θ ( i j k ) = θ ( k j i ) = θ ( j ) .
A p = δ q r / ( Σ δ 2 ) 1 2 = δ q r / δ ˜ .
θ ( k ) = 2 [ ( δ i k A i - δ j k A j ) 2 + ( δ i j A j - δ i k A k ) 2 + ( δ i j A i - δ j k A k ) 2 ] 1 2 .
δ j k A i + δ i k A j + δ i j A k = δ ˜ cos φ ,
θ ( k ) = 2 δ ˜ sin φ