Abstract

Dysprosium- and samarium-activated yttrium vanadates, when properly prepared, are phosphors with constant quantum yield over the range of 2000 to 3450 Å. Correlation of stoichiometry and reflectance is given and an explanation of the possible energy processes is also presented.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Watanabe and E. C. Y. Inn., J. Opt. Soc. Am. 43, 32 (1953).
    [CrossRef]
  2. J. F. Manmann, Z. Angew. Phys. 10, 197 (1958); M. Schon and O. Schult, Z. Instrumentenk. 66, 67 (1958).
  3. C. A. Parker and W. T. Rees, Analyst 85, 587 (1960); see also C. A. Parker, Nature 182, 1002 (1958).
    [CrossRef]
  4. W. H. Melhuish, New Zealand J. Sci. Tech. 37, 2B, 142, (1955); see also W. H. Melhuish, J. Opt. Soc. Am. 52, 1256 (1962); K. J. Nygaard, J. Opt. Soc. Am. 55, 944 (1965).
    [CrossRef]
  5. These data have been corrected by calculation to show any deviation from linear quantum yield more clearly. Actually, as recorded under constant-energy excitation, the sodium salicylate curve shows a straight-line slope with wavelength, as would be expected. The YVO4:Dy and YVO4:Sm curves differ only in relative intensity as shown. Thus, if sodium salicylate has a constant quantum yield then so have the Dy+3 and Sm+3 activated phosphors.
  6. W. Slavin, R. W. Mooney, and D. T. Palumbo, J. Opt. Soc. Am. 51, 93 (1961).
    [CrossRef]
  7. Diffuse-powder reflectance data were obtained with a Cary-15 spectrophotometer, equipped with dual reflectance spheres, coated with BaSO4.
  8. F. C. Palilla, A. K. Levine, and M. Rinkevics, J. Electrochem. Soc. 112, 776 (1965).
    [CrossRef]
  9. R. C. Ropp, J. Electrochem. Soc. 112, 181 (1965).
    [CrossRef]
  10. H. H. Tippins, J. Phys. Chem. Solids 27, 1069 (1966).
    [CrossRef]
  11. G. H. Dieke and H. M. Crosswhite, Appl. Opt. 2, 675 (1963).
    [CrossRef]

1966 (1)

H. H. Tippins, J. Phys. Chem. Solids 27, 1069 (1966).
[CrossRef]

1965 (2)

F. C. Palilla, A. K. Levine, and M. Rinkevics, J. Electrochem. Soc. 112, 776 (1965).
[CrossRef]

R. C. Ropp, J. Electrochem. Soc. 112, 181 (1965).
[CrossRef]

1963 (1)

1961 (1)

1960 (1)

C. A. Parker and W. T. Rees, Analyst 85, 587 (1960); see also C. A. Parker, Nature 182, 1002 (1958).
[CrossRef]

1958 (1)

J. F. Manmann, Z. Angew. Phys. 10, 197 (1958); M. Schon and O. Schult, Z. Instrumentenk. 66, 67 (1958).

1955 (1)

W. H. Melhuish, New Zealand J. Sci. Tech. 37, 2B, 142, (1955); see also W. H. Melhuish, J. Opt. Soc. Am. 52, 1256 (1962); K. J. Nygaard, J. Opt. Soc. Am. 55, 944 (1965).
[CrossRef]

1953 (1)

Crosswhite, H. M.

Dieke, G. H.

Inn, E. C. Y.

Levine, A. K.

F. C. Palilla, A. K. Levine, and M. Rinkevics, J. Electrochem. Soc. 112, 776 (1965).
[CrossRef]

Manmann, J. F.

J. F. Manmann, Z. Angew. Phys. 10, 197 (1958); M. Schon and O. Schult, Z. Instrumentenk. 66, 67 (1958).

Melhuish, W. H.

W. H. Melhuish, New Zealand J. Sci. Tech. 37, 2B, 142, (1955); see also W. H. Melhuish, J. Opt. Soc. Am. 52, 1256 (1962); K. J. Nygaard, J. Opt. Soc. Am. 55, 944 (1965).
[CrossRef]

Mooney, R. W.

Palilla, F. C.

F. C. Palilla, A. K. Levine, and M. Rinkevics, J. Electrochem. Soc. 112, 776 (1965).
[CrossRef]

Palumbo, D. T.

Parker, C. A.

C. A. Parker and W. T. Rees, Analyst 85, 587 (1960); see also C. A. Parker, Nature 182, 1002 (1958).
[CrossRef]

Rees, W. T.

C. A. Parker and W. T. Rees, Analyst 85, 587 (1960); see also C. A. Parker, Nature 182, 1002 (1958).
[CrossRef]

Rinkevics, M.

F. C. Palilla, A. K. Levine, and M. Rinkevics, J. Electrochem. Soc. 112, 776 (1965).
[CrossRef]

Ropp, R. C.

R. C. Ropp, J. Electrochem. Soc. 112, 181 (1965).
[CrossRef]

Slavin, W.

Tippins, H. H.

H. H. Tippins, J. Phys. Chem. Solids 27, 1069 (1966).
[CrossRef]

Watanabe, K.

Analyst (1)

C. A. Parker and W. T. Rees, Analyst 85, 587 (1960); see also C. A. Parker, Nature 182, 1002 (1958).
[CrossRef]

Appl. Opt. (1)

J. Electrochem. Soc. (2)

F. C. Palilla, A. K. Levine, and M. Rinkevics, J. Electrochem. Soc. 112, 776 (1965).
[CrossRef]

R. C. Ropp, J. Electrochem. Soc. 112, 181 (1965).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Phys. Chem. Solids (1)

H. H. Tippins, J. Phys. Chem. Solids 27, 1069 (1966).
[CrossRef]

New Zealand J. Sci. Tech. (1)

W. H. Melhuish, New Zealand J. Sci. Tech. 37, 2B, 142, (1955); see also W. H. Melhuish, J. Opt. Soc. Am. 52, 1256 (1962); K. J. Nygaard, J. Opt. Soc. Am. 55, 944 (1965).
[CrossRef]

Z. Angew. Phys. (1)

J. F. Manmann, Z. Angew. Phys. 10, 197 (1958); M. Schon and O. Schult, Z. Instrumentenk. 66, 67 (1958).

Other (2)

These data have been corrected by calculation to show any deviation from linear quantum yield more clearly. Actually, as recorded under constant-energy excitation, the sodium salicylate curve shows a straight-line slope with wavelength, as would be expected. The YVO4:Dy and YVO4:Sm curves differ only in relative intensity as shown. Thus, if sodium salicylate has a constant quantum yield then so have the Dy+3 and Sm+3 activated phosphors.

Diffuse-powder reflectance data were obtained with a Cary-15 spectrophotometer, equipped with dual reflectance spheres, coated with BaSO4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of quantum yields at constant flux excitation, compared to sodium salicylate.

Fig. 2
Fig. 2

Effect of phosphor composition on relative emission. Solid state reaction: Y 2 O 3 + V 2 O 5 Δ 2 YVO 4. Composition: Y0.95(VO4)y:Eu0.05; fired at 1200°C in air (yellow body color increases from right to left).

Fig. 3
Fig. 3

Reflectance spectra of YVO4:Eu phosphors. Yx(VO4)y: x=y has “white” body color; x>y has “yellow” body color.

Fig. 4
Fig. 4

Excitation-emission of YVO4:Sm0.05 as a function of temperature. Upper: 293°K; left—emission at 3280 Å excitation, right—excitation of 6050 Å or 6525 Å emission. Lower: 78°K; left—emission at 3280 Å excitation, right—excitation of 6075 Å or 6585 Å emission.

Tables (1)

Tables Icon

Table I Emission lines observed for rare-earth vanadate phosphors.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Y 2 O 3 + V 2 O 5 Δ 2 YVO 4
Y 2 ( C 2 O 4 ) 3 · 4 H 2 O + V 2 O 5 Δ 2 YVO 4 + 4 H 2 O + 3 CO + 3 CO 2 .
V + 5 O n - 2 n V + 3 O n - 2 n + 2