Abstract

In a gas laser a spectrum line, whose upper state is the lower state of the laser transition, may contain a structure due to the laser action. We have observed this structure, which we refer to as ears, on the 6096-Å neon line emitted spontaneously in a 1.15 μ He–Ne laser. The width of the ear was measured interferometrically and compared with the width predicted from the phenomenological width γab/π in the laser transition.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. White, Bull. Am. Phys. Soc. 9, 280 (1964); J. Opt. Soc. Am. 55, 1436 (1965). See also: A. Javan, in Quantum Optics and Electronics; Lectures Delivered at Les Houches During the 1964 Session of the Summer School of Theoretical Physics, University of Grenoble, C. DeWitt, A. Blandin, and C. Cohen–Tannoudji Eds. (Gordon and Breach Publishers, Inc., New York, 1965), p. 383.
  2. W. E. Lamb, Phys. Rev. 134, A1429 (1964).
    [CrossRef]
  3. R. Minkowski and H. Bruck, Z. Physik 95, 299 (1935).
    [CrossRef]
  4. H. S. Boyne, M. M. Birky, and W. G. Schweitzer, Appl. Phys. Letters 7, 62 (1965).
    [CrossRef]
  5. E. A. Ballik, Appl. Opt. 5, 170 (1966).
    [CrossRef] [PubMed]
  6. W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities: Hydrogen Through Neon (National Standard Reference Data Services, Natl. Bur. Std. 4 Vol. 1; U. S. Government Printing Office, Washington, D. C., 1966). (This does not include any pressure effects.)

1966 (1)

1965 (1)

H. S. Boyne, M. M. Birky, and W. G. Schweitzer, Appl. Phys. Letters 7, 62 (1965).
[CrossRef]

1964 (2)

J. A. White, Bull. Am. Phys. Soc. 9, 280 (1964); J. Opt. Soc. Am. 55, 1436 (1965). See also: A. Javan, in Quantum Optics and Electronics; Lectures Delivered at Les Houches During the 1964 Session of the Summer School of Theoretical Physics, University of Grenoble, C. DeWitt, A. Blandin, and C. Cohen–Tannoudji Eds. (Gordon and Breach Publishers, Inc., New York, 1965), p. 383.

W. E. Lamb, Phys. Rev. 134, A1429 (1964).
[CrossRef]

1935 (1)

R. Minkowski and H. Bruck, Z. Physik 95, 299 (1935).
[CrossRef]

Ballik, E. A.

Birky, M. M.

H. S. Boyne, M. M. Birky, and W. G. Schweitzer, Appl. Phys. Letters 7, 62 (1965).
[CrossRef]

Boyne, H. S.

H. S. Boyne, M. M. Birky, and W. G. Schweitzer, Appl. Phys. Letters 7, 62 (1965).
[CrossRef]

Bruck, H.

R. Minkowski and H. Bruck, Z. Physik 95, 299 (1935).
[CrossRef]

Glennon, B. M.

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities: Hydrogen Through Neon (National Standard Reference Data Services, Natl. Bur. Std. 4 Vol. 1; U. S. Government Printing Office, Washington, D. C., 1966). (This does not include any pressure effects.)

Lamb, W. E.

W. E. Lamb, Phys. Rev. 134, A1429 (1964).
[CrossRef]

Minkowski, R.

R. Minkowski and H. Bruck, Z. Physik 95, 299 (1935).
[CrossRef]

Schweitzer, W. G.

H. S. Boyne, M. M. Birky, and W. G. Schweitzer, Appl. Phys. Letters 7, 62 (1965).
[CrossRef]

Smith, M. W.

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities: Hydrogen Through Neon (National Standard Reference Data Services, Natl. Bur. Std. 4 Vol. 1; U. S. Government Printing Office, Washington, D. C., 1966). (This does not include any pressure effects.)

White, J. A.

J. A. White, Bull. Am. Phys. Soc. 9, 280 (1964); J. Opt. Soc. Am. 55, 1436 (1965). See also: A. Javan, in Quantum Optics and Electronics; Lectures Delivered at Les Houches During the 1964 Session of the Summer School of Theoretical Physics, University of Grenoble, C. DeWitt, A. Blandin, and C. Cohen–Tannoudji Eds. (Gordon and Breach Publishers, Inc., New York, 1965), p. 383.

Wiese, W. L.

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities: Hydrogen Through Neon (National Standard Reference Data Services, Natl. Bur. Std. 4 Vol. 1; U. S. Government Printing Office, Washington, D. C., 1966). (This does not include any pressure effects.)

Appl. Opt. (1)

Appl. Phys. Letters (1)

H. S. Boyne, M. M. Birky, and W. G. Schweitzer, Appl. Phys. Letters 7, 62 (1965).
[CrossRef]

Bull. Am. Phys. Soc. (1)

J. A. White, Bull. Am. Phys. Soc. 9, 280 (1964); J. Opt. Soc. Am. 55, 1436 (1965). See also: A. Javan, in Quantum Optics and Electronics; Lectures Delivered at Les Houches During the 1964 Session of the Summer School of Theoretical Physics, University of Grenoble, C. DeWitt, A. Blandin, and C. Cohen–Tannoudji Eds. (Gordon and Breach Publishers, Inc., New York, 1965), p. 383.

Phys. Rev. (1)

W. E. Lamb, Phys. Rev. 134, A1429 (1964).
[CrossRef]

Z. Physik (1)

R. Minkowski and H. Bruck, Z. Physik 95, 299 (1935).
[CrossRef]

Other (1)

W. L. Wiese, M. W. Smith, and B. M. Glennon, Atomic Transition Probabilities: Hydrogen Through Neon (National Standard Reference Data Services, Natl. Bur. Std. 4 Vol. 1; U. S. Government Printing Office, Washington, D. C., 1966). (This does not include any pressure effects.)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Line profiles in the laser transition and decay transition and the velocity distributions in the associated energy levels.

Fig. 2
Fig. 2

Partial energy-level diagram for Ne showing the 2s2–2p4, 1.15-μ laser transition and the three allowed transitions originating on the 2p4 level.

Fig. 3
Fig. 3

Schematic diagram of the apparatus. M represents the monochromator and recording equipment.

Fig. 4
Fig. 4

Examples of recorded fringes of 6096-Å line with laser operating and with laser not operating because of deliberate misalignment of mirrors. To record both ears at center, the laser frequency was locked onto the Lamb dip. Recorded at about one fringe in 2 min. Time constant of system was about 1 sec. Scale at center is nanoamps of anode current on photomultiplier. Current with monochromator tuned just off line=1.8 nA.

Fig. 5
Fig. 5

Family of curves for γab/Ku vs ξm for the indicated values of 1/η.

Fig. 6
Fig. 6

Experimental tuning curve (points) compared with the two curves calculated from the two different values of γab/Ku predicted for ξm=0.042, 1/η=0.977.

Fig. 7
Fig. 7

Plot of P0 vs (1−η−1). The highest point corresponds to the curve used in determining γab/Ku. Error bars are estimates of the uncertainty caused by noise on the Lamb-dip curves.

Fig. 8
Fig. 8

Partial plot of γab/Ku vs ξm for the dispersion experiment.

Tables (1)

Tables Icon

Table I Ear width.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ ν ear = λ L λ D ( γ a + γ b ) 2 π + γ c 2 π ,
Δ ν ear = λ L λ D γ a b π + γ c 2 π ,
P P 0 = ( 2 1 - η - 1 ) exp ( - ξ 2 ) - η - 1 1 + [ 1 + ( K u / γ a b ) 2 ξ 2 ] - 1 ,
η - 1 = exp ( - ξ m 2 ) { 1 - 2 ( γ a b / K u ) 2 - 3 ξ m 2 - ( K u / γ a b ) 2 ξ m 4 } .
P 0 = A ( 1 - η - 1 ) .
2 Q ν δ ν δ η = 1 Z i ( 0 , Γ ) { Z r ( ξ , Γ ) + Z i ( ξ , Γ ) ξ Γ 2 Γ 2 + ξ 2 } ,
4 Γ 4 - π 1 2 Γ 3 + 4 ξ m 2 Γ 2 + ( π 1 3 / 2 ) ξ m 2 Γ + ξ m 4 = 0.
K u ( 6328 Å ) = 847 ± 12 MHz K u ( 1.15 μ ) = 466 ± 7 MHz .
Δ ν = 1.153 / 0.6096 × ( 85 ± 10 ) + ( 8 ± 2 ) = 169 ± 20 MHz .