Abstract

Measurements of absorption and excitation spectra for Nd3+ in soda-lime silicate glass, CaWO4, and Y3Al2(AlO4)3 (YAG) are presented. The relative quantum efficiency for F432I411/2 fluorescence is evaluated for principal absorptions over the wavelength range 3250–9300 Å. For the crystals, quantum efficiency is found to be independent of the level pumped, to within ±12% for CaWO4 and ±13% for YAG. Except for slight quenching of levels between 4000 and 5500 Å, quantum efficiency for the glass sample is independent of pumping level to within ±5%. These results indicate that the efficiency of each step in the process which populates the F432 level is near unity. Also, over the range of structures investigated, relative Nd3+ quantum efficiency appears to be independent of the details of crystal-field structure.

© 1967 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Harada and C. K. Suzuki, Appl. Opt. 4, 225 (1965).
    [CrossRef]
  2. R. A. Brandewie, J. S. Hitt, and J. M. Feldman, J. Appl. Phys. 34, 3415 (1965).
    [CrossRef]
  3. W. T. Haswell, J. S. Hitt, and J. M. Feldman, Proc. IEEE 52, 93 (1964).
    [CrossRef]
  4. M. L. Bhaumik and C. L. Telk, J. Opt. Soc. Am. 54, 1211 (1964).
    [CrossRef]
  5. R. A. Gudmundsen, O. J. March, and E. Matovich, J. Chem. Phys. 39, 272 (1963).
    [CrossRef]
  6. J. G. DeShazer and L. G. Komai, J. Opt. Soc. Am. 55, 940 (1965).
  7. R. Stair, W. E. Schneider, and J. K. Jackson, Appl. Opt. 2, 1151 (1963).
    [CrossRef]
  8. T. C. MacAvoy, M. L. Charters, and R. D. Maurer, Solid State Technol., February1965, p. 23.
  9. L. F. Johnson, J. Appl. Phys. 34, 897 (1963).
    [CrossRef]
  10. J. L. Koningstein and J. E. Geusic, Phys. Rev. 136, A711 (1964).
    [CrossRef]
  11. R. A. Brandewie and C. L. Telk, Bull. Am. Phys. Soc. 10, 1103 (1965).
  12. J. H. Goncz and P. B. Newell, J. Opt. Soc. Am. 56, 87 (1966).
    [CrossRef]

1966 (1)

1965 (5)

R. A. Brandewie and C. L. Telk, Bull. Am. Phys. Soc. 10, 1103 (1965).

R. H. Harada and C. K. Suzuki, Appl. Opt. 4, 225 (1965).
[CrossRef]

R. A. Brandewie, J. S. Hitt, and J. M. Feldman, J. Appl. Phys. 34, 3415 (1965).
[CrossRef]

J. G. DeShazer and L. G. Komai, J. Opt. Soc. Am. 55, 940 (1965).

T. C. MacAvoy, M. L. Charters, and R. D. Maurer, Solid State Technol., February1965, p. 23.

1964 (3)

W. T. Haswell, J. S. Hitt, and J. M. Feldman, Proc. IEEE 52, 93 (1964).
[CrossRef]

M. L. Bhaumik and C. L. Telk, J. Opt. Soc. Am. 54, 1211 (1964).
[CrossRef]

J. L. Koningstein and J. E. Geusic, Phys. Rev. 136, A711 (1964).
[CrossRef]

1963 (3)

R. A. Gudmundsen, O. J. March, and E. Matovich, J. Chem. Phys. 39, 272 (1963).
[CrossRef]

L. F. Johnson, J. Appl. Phys. 34, 897 (1963).
[CrossRef]

R. Stair, W. E. Schneider, and J. K. Jackson, Appl. Opt. 2, 1151 (1963).
[CrossRef]

Bhaumik, M. L.

Brandewie, R. A.

R. A. Brandewie, J. S. Hitt, and J. M. Feldman, J. Appl. Phys. 34, 3415 (1965).
[CrossRef]

R. A. Brandewie and C. L. Telk, Bull. Am. Phys. Soc. 10, 1103 (1965).

Charters, M. L.

T. C. MacAvoy, M. L. Charters, and R. D. Maurer, Solid State Technol., February1965, p. 23.

DeShazer, J. G.

Feldman, J. M.

R. A. Brandewie, J. S. Hitt, and J. M. Feldman, J. Appl. Phys. 34, 3415 (1965).
[CrossRef]

W. T. Haswell, J. S. Hitt, and J. M. Feldman, Proc. IEEE 52, 93 (1964).
[CrossRef]

Geusic, J. E.

J. L. Koningstein and J. E. Geusic, Phys. Rev. 136, A711 (1964).
[CrossRef]

Goncz, J. H.

Gudmundsen, R. A.

R. A. Gudmundsen, O. J. March, and E. Matovich, J. Chem. Phys. 39, 272 (1963).
[CrossRef]

Harada, R. H.

Haswell, W. T.

W. T. Haswell, J. S. Hitt, and J. M. Feldman, Proc. IEEE 52, 93 (1964).
[CrossRef]

Hitt, J. S.

R. A. Brandewie, J. S. Hitt, and J. M. Feldman, J. Appl. Phys. 34, 3415 (1965).
[CrossRef]

W. T. Haswell, J. S. Hitt, and J. M. Feldman, Proc. IEEE 52, 93 (1964).
[CrossRef]

Jackson, J. K.

Johnson, L. F.

L. F. Johnson, J. Appl. Phys. 34, 897 (1963).
[CrossRef]

Komai, L. G.

Koningstein, J. L.

J. L. Koningstein and J. E. Geusic, Phys. Rev. 136, A711 (1964).
[CrossRef]

MacAvoy, T. C.

T. C. MacAvoy, M. L. Charters, and R. D. Maurer, Solid State Technol., February1965, p. 23.

March, O. J.

R. A. Gudmundsen, O. J. March, and E. Matovich, J. Chem. Phys. 39, 272 (1963).
[CrossRef]

Matovich, E.

R. A. Gudmundsen, O. J. March, and E. Matovich, J. Chem. Phys. 39, 272 (1963).
[CrossRef]

Maurer, R. D.

T. C. MacAvoy, M. L. Charters, and R. D. Maurer, Solid State Technol., February1965, p. 23.

Newell, P. B.

Schneider, W. E.

Stair, R.

Suzuki, C. K.

Telk, C. L.

R. A. Brandewie and C. L. Telk, Bull. Am. Phys. Soc. 10, 1103 (1965).

M. L. Bhaumik and C. L. Telk, J. Opt. Soc. Am. 54, 1211 (1964).
[CrossRef]

Appl. Opt. (2)

Bull. Am. Phys. Soc. (1)

R. A. Brandewie and C. L. Telk, Bull. Am. Phys. Soc. 10, 1103 (1965).

J. Appl. Phys. (2)

L. F. Johnson, J. Appl. Phys. 34, 897 (1963).
[CrossRef]

R. A. Brandewie, J. S. Hitt, and J. M. Feldman, J. Appl. Phys. 34, 3415 (1965).
[CrossRef]

J. Chem. Phys. (1)

R. A. Gudmundsen, O. J. March, and E. Matovich, J. Chem. Phys. 39, 272 (1963).
[CrossRef]

J. Opt. Soc. Am. (3)

Phys. Rev. (1)

J. L. Koningstein and J. E. Geusic, Phys. Rev. 136, A711 (1964).
[CrossRef]

Proc. IEEE (1)

W. T. Haswell, J. S. Hitt, and J. M. Feldman, Proc. IEEE 52, 93 (1964).
[CrossRef]

Solid State Technol. (1)

T. C. MacAvoy, M. L. Charters, and R. D. Maurer, Solid State Technol., February1965, p. 23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental configuration for measurement of fluorescent efficiency and absorption. (1) 200-W tungsten-quartz-iodide lamp; (2) lens; (3) monochromator; (4) aperture stop; (5) sample; (6) Epply thermopile; (7) filters; (8) photomultiplier; (9) Keithly microvoltmeter (with zero suppression) and photomultiplier load resistor; (10) recorder. Light baffling and shielding is not shown.

Fig. 2
Fig. 2

Relative efficiency of F 4 3 2 I 4 11 / 2 fluorescence, and percent transmittance for 4.7 wt% Nd2O3 in soda-lime silicate glass as a function of excitation wavelength. 30 Å resolution, path length 0.576 cm.

Fig. 3
Fig. 3

Relative quantum efficiency of F 4 3 2 I 4 11 / 2 fluorescence for 4.7 wt% Nd2O3 in soda-lime silicate glass as a function of excitation wavelength. 30 Å resolution, path length 0.576 cm.

Fig. 4
Fig. 4

Relative efficiency of F 4 3 2 I 4 11 / 2 fluorescence, and percent transmittance for 1 at. % Nd, 2 at. % Na in CaWO4 as a function of excitation wavelength. 30 Å resolution, path length 0.472 cm.

Fig. 5
Fig. 5

Relative quantum efficiency of F 4 3 2 I 4 11 / 2 fluorescence for 1 at. % Nd, 2 at. % Na in CaWO4 as a function of excitation wavelength. 5 Å resolution, path length 0.472 cm.

Fig. 6
Fig. 6

Relative efficiency of F 4 3 2 I 4 11 / 2 fluorescence, and percent transmittance for 1 at.% Nd in Y3Al2(AlO4)3 (YAG) as a function of excitation wavelength. 30 Å resolution, path length 0.3 cm.

Fig. 7
Fig. 7

Relative quantum efficiency of F 4 3 2 I 4 11 / 2 fluorescence for 1 at. % Nd in Y3Al2(AlO4)3 (YAG) as a function of excitation wavelength. 5 Å resolution, path length 0.3 cm.

Tables (1)

Tables Icon

Table I Summary of YAG fluorescence data with selective excitation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q = k ( λ f λ a ) [ f eff ( 1 - I o / I o ) - I / I o ] f i ( λ ) d λ f i ( λ ) F ( λ ) d λ
f eff = I f / I of .
f i ( λ ) d λ / f i ( λ ) F ( λ ) d λ ,