Abstract

Energy transfer between the Sm3+, Eu3+, Tb3+, and Dy3+ ions has been systematically studied in the sodium rare-earth tungstate hosts. Evidence has been obtained for the transfer of excitation energy between all ion pairs of this group. Direct evidence for exchange of energy was established by the method of selective excitation for the Dy3+ → Tb3+, Tb3+ → Eu3+, and Sm3+ → Eu3+ ion pairs. Indirect evidence for energy transfer was found by fluorescence enhancement for the Tb3+ → Sm3+ ion pair and by lifetime measurements for the Dy3+ → Sm3+ and Dy3+ → Eu3+ ion pairs. The results are consistent with the “resonant” exchange mechanism as the dominant process responsible for the transfer of energy between these ions.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Peterson and P. M. Bridenbaugh, J. Opt. Soc. Am. 53, 1129 (1963).
    [Crossref]
  2. W. W. Holloway, M. Kestigian, and R. Newman, Phys. Rev. Letters 11, 458 (1963).
    [Crossref]
  3. L. F. Johnson, L. G. Van Uitert, J. J. Rubin, and R. A. Thomas, Phys. Rev. 133, A494 (1964).
    [Crossref]
  4. J. Murphy, R. C. Ohlman, and R. Mazelsky, Phys. Rev. Letters 13, 135 (1964).
    [Crossref]
  5. A. David Pearson and S. P. S. Porto, Appl. Phys. Letters 4, 202 (1964).
    [Crossref]
  6. J. D. Axe and P. F. Weller, J. Chem. Phys. 40, 3066 (1964).
    [Crossref]
  7. The rare-earth energy level designations are taken from G. H. Dieke, Advances in Quantum Electronics (Columbia University Press, New York1961), p. 170.

1964 (4)

L. F. Johnson, L. G. Van Uitert, J. J. Rubin, and R. A. Thomas, Phys. Rev. 133, A494 (1964).
[Crossref]

J. Murphy, R. C. Ohlman, and R. Mazelsky, Phys. Rev. Letters 13, 135 (1964).
[Crossref]

A. David Pearson and S. P. S. Porto, Appl. Phys. Letters 4, 202 (1964).
[Crossref]

J. D. Axe and P. F. Weller, J. Chem. Phys. 40, 3066 (1964).
[Crossref]

1963 (2)

G. E. Peterson and P. M. Bridenbaugh, J. Opt. Soc. Am. 53, 1129 (1963).
[Crossref]

W. W. Holloway, M. Kestigian, and R. Newman, Phys. Rev. Letters 11, 458 (1963).
[Crossref]

Axe, J. D.

J. D. Axe and P. F. Weller, J. Chem. Phys. 40, 3066 (1964).
[Crossref]

Bridenbaugh, P. M.

David Pearson, A.

A. David Pearson and S. P. S. Porto, Appl. Phys. Letters 4, 202 (1964).
[Crossref]

Dieke, G. H.

The rare-earth energy level designations are taken from G. H. Dieke, Advances in Quantum Electronics (Columbia University Press, New York1961), p. 170.

Holloway, W. W.

W. W. Holloway, M. Kestigian, and R. Newman, Phys. Rev. Letters 11, 458 (1963).
[Crossref]

Johnson, L. F.

L. F. Johnson, L. G. Van Uitert, J. J. Rubin, and R. A. Thomas, Phys. Rev. 133, A494 (1964).
[Crossref]

Kestigian, M.

W. W. Holloway, M. Kestigian, and R. Newman, Phys. Rev. Letters 11, 458 (1963).
[Crossref]

Mazelsky, R.

J. Murphy, R. C. Ohlman, and R. Mazelsky, Phys. Rev. Letters 13, 135 (1964).
[Crossref]

Murphy, J.

J. Murphy, R. C. Ohlman, and R. Mazelsky, Phys. Rev. Letters 13, 135 (1964).
[Crossref]

Newman, R.

W. W. Holloway, M. Kestigian, and R. Newman, Phys. Rev. Letters 11, 458 (1963).
[Crossref]

Ohlman, R. C.

J. Murphy, R. C. Ohlman, and R. Mazelsky, Phys. Rev. Letters 13, 135 (1964).
[Crossref]

Peterson, G. E.

Porto, S. P. S.

A. David Pearson and S. P. S. Porto, Appl. Phys. Letters 4, 202 (1964).
[Crossref]

Rubin, J. J.

L. F. Johnson, L. G. Van Uitert, J. J. Rubin, and R. A. Thomas, Phys. Rev. 133, A494 (1964).
[Crossref]

Thomas, R. A.

L. F. Johnson, L. G. Van Uitert, J. J. Rubin, and R. A. Thomas, Phys. Rev. 133, A494 (1964).
[Crossref]

Van Uitert, L. G.

L. F. Johnson, L. G. Van Uitert, J. J. Rubin, and R. A. Thomas, Phys. Rev. 133, A494 (1964).
[Crossref]

Weller, P. F.

J. D. Axe and P. F. Weller, J. Chem. Phys. 40, 3066 (1964).
[Crossref]

Appl. Phys. Letters (1)

A. David Pearson and S. P. S. Porto, Appl. Phys. Letters 4, 202 (1964).
[Crossref]

J. Chem. Phys. (1)

J. D. Axe and P. F. Weller, J. Chem. Phys. 40, 3066 (1964).
[Crossref]

J. Opt. Soc. Am. (1)

Phys. Rev. (1)

L. F. Johnson, L. G. Van Uitert, J. J. Rubin, and R. A. Thomas, Phys. Rev. 133, A494 (1964).
[Crossref]

Phys. Rev. Letters (2)

J. Murphy, R. C. Ohlman, and R. Mazelsky, Phys. Rev. Letters 13, 135 (1964).
[Crossref]

W. W. Holloway, M. Kestigian, and R. Newman, Phys. Rev. Letters 11, 458 (1963).
[Crossref]

Other (1)

The rare-earth energy level designations are taken from G. H. Dieke, Advances in Quantum Electronics (Columbia University Press, New York1961), p. 170.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

F. 1
F. 1

The energy level diagrams of Sm3+, Eu3+, Tb3+, and Dy3+ ions following Dieke.7 The levels, from which the principal visible fluorescence lines used in these experiments originate, are shown with the vertical arrows. The horizontal arrow designates the Sm3+ energy level which was selectively excited in the experiment described in Fig. 2.

F. 2
F. 2

Densitometer tracings of photographic plates demonstrating transfer of energy from the Sm3+ ion to the Eu3+ ion in sodium rare-earth tungstate hosts. In (a) and (b) the fluorescence and absorption spectra of the Eu3+ ion in this host material are shown; and in (d) and (e) these spectra are shown for the Sm3+ ion. Tracing (c) shows the (scattered) excitation radiation corresponding to the absorption levels of the Sm3+ ion and fluorescence characteristic of the Eu3+ ion in Na0.5Eu0.4Sm0.1WO4. In those tracings no attempt has been made to correct the nonlinearities of the photographic process.

Tables (1)

Tables Icon

Table I Energy transfer between Sm3+, Eu3+, Tb3+, and Dy3+ions in sodium rare-earth tungstates.