Abstract

A detailed analysis was made of the response characteristics of single cells in the lateral geniculate nucleus of the macaque monkey. The goal was to understand how these cells contribute to the processing of visual information. Data were analyzed from a representative sample of 147 cells, whose responses to equal-energy spectra (presented as diffuse flashes of monochromatic light) were recorded at three radiance levels. On the basis of their responses, the cells were divided into two general classes: (a) spectrally nonopponent cells which respond to all wavelengths with either an increase or decrease in firing rate, (b) spectrally opponent cells (about two-thirds of the sample) which respond with an increase in firing rate to some parts of the spectrum and a decrease to other parts. Four types of opponent cells were found: (i) red excitatory and green inhibitory (+R−G), (ii) green excitatory and red inhibitory (+G−R), (iii) yellow excitatory and blue inhibitory (+Y−B), (iv) blue excitatory and yellow inhibitory (+B−Y). Comparisons with psychophysical data indicated that nonopponent cells transmit brightness information; opponent cells, however, carry information about color, the hue of a light being determined by the relative responses of the four types. The saturation of spectral lights appears to be related to the differences in responses of opponent and non-opponent cells.

© 1966 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconstruction of equidistant color space from responses of visual neurones of macaques

A. Valberg, T. Seim, B. B. Lee, and J. Tryti
J. Opt. Soc. Am. A 3(10) 1726-1734 (1986)

Effects of Adaptation on the Lateral Geniculate Response to Light Increment and Decrement*

Gerald H. Jacobs
J. Opt. Soc. Am. 55(11) 1535-1540 (1965)

Principal-component analysis of macaque lateral geniculate nucleus chromatic data

Richard A. Young
J. Opt. Soc. Am. A 3(10) 1735-1742 (1986)

References

  • View by:
  • |
  • |
  • |

  1. W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
    [Crossref] [PubMed]
  2. P. K. Brown and G. Wald, Science 144, 45 (1964).
    [Crossref] [PubMed]
  3. R. Granit, Receptors and Sensory Perception (Yale University Press, New Haven, Conn., 1955).
  4. R. L. De Valois, C. J. Smith, and S. T. Kitai, J. Comp. Physiol. Psychol. 52, 635 (1959).
    [Crossref] [PubMed]
  5. R. L. De Valois and A. E. Jones, in The Visual System: Neurophysiology and Psychophysics, R. Jung and H. Kornhuber, Eds. (Springer-Verlag, Berlin, 1961), pp. 178–191.
  6. R. L. De Valois, in Contributions to Sensory Physiology, W. D. Neff, Ed. (Academic Press Inc., New York, 1965), Vol. 1, p. 137.
    [Crossref]
  7. L. M. Hurvich and D. Jameson, Psychol. Rev. 64, 384 (1957).
    [Crossref]
  8. W. D. Wright, Researches on Normal and Defective Colour Vision (C. V. Mosby Co., St. Louis, 1947).
  9. A. C. Beare, Am. J. Psychol. 76, 248 (1963).
    [Crossref] [PubMed]
  10. R. M. Boynton and J. Gordon, J. Opt. Soc. Am. 55, 78 (1965).
    [Crossref]
  11. P. L. Walraven, “On the Mechanisms of Colour Vision” (thesis, Univ. of Utrecht, 1962. Report of the Inst, for Perception RVO−TNO, 16, Soesterberg, Netherlands, 1962).
  12. G. H. Jacobs, Vision Res. 4, 221 (1964).
    [Crossref] [PubMed]

1965 (1)

1964 (3)

G. H. Jacobs, Vision Res. 4, 221 (1964).
[Crossref] [PubMed]

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

P. K. Brown and G. Wald, Science 144, 45 (1964).
[Crossref] [PubMed]

1963 (1)

A. C. Beare, Am. J. Psychol. 76, 248 (1963).
[Crossref] [PubMed]

1959 (1)

R. L. De Valois, C. J. Smith, and S. T. Kitai, J. Comp. Physiol. Psychol. 52, 635 (1959).
[Crossref] [PubMed]

1957 (1)

L. M. Hurvich and D. Jameson, Psychol. Rev. 64, 384 (1957).
[Crossref]

Beare, A. C.

A. C. Beare, Am. J. Psychol. 76, 248 (1963).
[Crossref] [PubMed]

Boynton, R. M.

Brown, P. K.

P. K. Brown and G. Wald, Science 144, 45 (1964).
[Crossref] [PubMed]

De Valois, R. L.

R. L. De Valois, C. J. Smith, and S. T. Kitai, J. Comp. Physiol. Psychol. 52, 635 (1959).
[Crossref] [PubMed]

R. L. De Valois, in Contributions to Sensory Physiology, W. D. Neff, Ed. (Academic Press Inc., New York, 1965), Vol. 1, p. 137.
[Crossref]

R. L. De Valois and A. E. Jones, in The Visual System: Neurophysiology and Psychophysics, R. Jung and H. Kornhuber, Eds. (Springer-Verlag, Berlin, 1961), pp. 178–191.

Dobelle, W. H.

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

Gordon, J.

Granit, R.

R. Granit, Receptors and Sensory Perception (Yale University Press, New Haven, Conn., 1955).

Hurvich, L. M.

L. M. Hurvich and D. Jameson, Psychol. Rev. 64, 384 (1957).
[Crossref]

Jacobs, G. H.

G. H. Jacobs, Vision Res. 4, 221 (1964).
[Crossref] [PubMed]

Jameson, D.

L. M. Hurvich and D. Jameson, Psychol. Rev. 64, 384 (1957).
[Crossref]

Jones, A. E.

R. L. De Valois and A. E. Jones, in The Visual System: Neurophysiology and Psychophysics, R. Jung and H. Kornhuber, Eds. (Springer-Verlag, Berlin, 1961), pp. 178–191.

Kitai, S. T.

R. L. De Valois, C. J. Smith, and S. T. Kitai, J. Comp. Physiol. Psychol. 52, 635 (1959).
[Crossref] [PubMed]

MacNichol, E. F.

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

Marks, W. B.

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

Smith, C. J.

R. L. De Valois, C. J. Smith, and S. T. Kitai, J. Comp. Physiol. Psychol. 52, 635 (1959).
[Crossref] [PubMed]

Wald, G.

P. K. Brown and G. Wald, Science 144, 45 (1964).
[Crossref] [PubMed]

Walraven, P. L.

P. L. Walraven, “On the Mechanisms of Colour Vision” (thesis, Univ. of Utrecht, 1962. Report of the Inst, for Perception RVO−TNO, 16, Soesterberg, Netherlands, 1962).

Wright, W. D.

W. D. Wright, Researches on Normal and Defective Colour Vision (C. V. Mosby Co., St. Louis, 1947).

Am. J. Psychol. (1)

A. C. Beare, Am. J. Psychol. 76, 248 (1963).
[Crossref] [PubMed]

J. Comp. Physiol. Psychol. (1)

R. L. De Valois, C. J. Smith, and S. T. Kitai, J. Comp. Physiol. Psychol. 52, 635 (1959).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Psychol. Rev. (1)

L. M. Hurvich and D. Jameson, Psychol. Rev. 64, 384 (1957).
[Crossref]

Science (2)

W. B. Marks, W. H. Dobelle, and E. F. MacNichol, Science 143, 1181 (1964).
[Crossref] [PubMed]

P. K. Brown and G. Wald, Science 144, 45 (1964).
[Crossref] [PubMed]

Vision Res. (1)

G. H. Jacobs, Vision Res. 4, 221 (1964).
[Crossref] [PubMed]

Other (5)

R. Granit, Receptors and Sensory Perception (Yale University Press, New Haven, Conn., 1955).

R. L. De Valois and A. E. Jones, in The Visual System: Neurophysiology and Psychophysics, R. Jung and H. Kornhuber, Eds. (Springer-Verlag, Berlin, 1961), pp. 178–191.

R. L. De Valois, in Contributions to Sensory Physiology, W. D. Neff, Ed. (Academic Press Inc., New York, 1965), Vol. 1, p. 137.
[Crossref]

W. D. Wright, Researches on Normal and Defective Colour Vision (C. V. Mosby Co., St. Louis, 1947).

P. L. Walraven, “On the Mechanisms of Colour Vision” (thesis, Univ. of Utrecht, 1962. Report of the Inst, for Perception RVO−TNO, 16, Soesterberg, Netherlands, 1962).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

F. 1
F. 1

Optical system: A, zirconium arc; B, shutter; C, signal marker; D, interference and neutral density filter racks; E, tungsten lamp; F, grating monochromator; G, neutral density wedge; H, mirror on shutter arm; I, monkey with Maxwellian view.

F. 2
F. 2

Detail of junctions of upper and lower beams in optical system.

F. 3
F. 3

Classification of the cells in the sample reported here. Numbers in parentheses refer to the number of cells in each category.

F. 4
F. 4

Frequency distributions of the crosspoints from excitation to inhibition for high, medium, and low radiances (see text). A: Cells excited by long wavelengths and inhibited by short wavelengths. B: Cells excited by short wavelengths and inhibited by long wavelengths.

F. 5
F. 5

Superimposed records of the responses of a +R−G cell to various wavelengths taken from an equal-energy spectrum. The one-second stimulus interval is indicated by the displacement in the trace at the top. This cell was chosen for reproduction because its firing rate at the different wavelengths corresponds closely to the average response rates for cells of this type.

F. 6
F. 6

Superimposed records from a +Y−B cell. Details as for Fig. 5.

F. 7
F. 7

Superimposed records from a +G−R cell. Details as for Fig. 5.

F. 8
F. 8

Superimposed records from a +B−Y cell. Details as for Fig. 5.

F. 9
F. 9

Mean response curves for +R−G cells to an equal-energy spectrum. Numbers next to each curve represent log attenuation relative to maximum available. Open symbols and vertical lines at each point enclose one standard error of the mean. Dotted horizontal line gives, for this type, the mean firing rate in the absence of stimulation.

F. 10
F. 10

Mean spectral response curves for +Y−B cells. Details as for Fig. 9.

F. 11
F. 11

Mean spectral response curves for +G−R cells. Details as for Fig. 9.

F. 12
F. 12

Mean spectral response curves for +B−Y cells. Details as for Fig. 9.

F. 13
F. 13

Equal-response spectral sensitivity curves for the excitatory and inhibitory components of each of the four types of opponent cells. Ordinates are log relative radiance for criterion response. Curves above wavelength scales are for the excitatory portions; curves below wavelength scales are for the inhibitory portions. I: (+R−G) cells; criteria: excitation, ●18 spikes/sec, Δ15, □12; inhibition, ●2, Δ4. II: (+Y−B) cells; criteria: excitation, ●30, Δ25, □15; inhibition, Δ4. III: (+G−R) cells; criteria: excitation, ●35, Δ25, □15; inhibition, ●3. IV: (+B−Y) cells; excitation, ●15, Δ12, □10; inhibition, ●2. See text for description of methods used to determine these functions.

F. 14
F. 14

Functions relating firing rate to radiance of monochromatic light. The functions for each of the four types of opponent cells are presented separately. All functions were arbitrarily equated at the middle one of the three radiances used.

F. 15
F. 15

Mean spectral response curves for nonopponent inhibitory cells. Details as for Fig. 9.

F. 16
F. 16

Mean spectral response curves for nonopponent excitatory cells. Details as for Fig. 9.

F. 17
F. 17

Equal-response spectral sensitivity functions (response criteria: (●— —●) 14 spikes/sec, (●– · –●) 18 for nonopponent excitatory cells compared with the CIE photopic luminosity function (—).

F. 18
F. 18

Spectral sensitivity functions for nonopponent excitatory cells and for the entire sample of opponent cells. The curve for the excitators (○‐ ‐ ‐ ‐○)is the average of the two curves in Fig. 17., while that for the opponent cells (●—●) was obtained by summing the responses of all opponent cells regardless of type, and then computing the function as for the nonopponent cells.

F. 19
F. 19

The solid curve (ordinate on the left) shows the differences between the log spectral sensitivity for all the opponent cells and that for all the nonopponent excitatory cells—i.e., the differences between the curves in Fig. 18. The dashed curve (ordinate on the right) gives the saturation discrimination function for human observers (after Wright8).

F. 20
F. 20

Color naming as a function of wavelength. (Δ—Δ) blue, (□‐ ‐ ‐□) green, (○— —○) yellow, (● · · · · ●) red. Replotted after Boynton and Gordon.10 See text.

F. 21
F. 21

Contributions, at three luminances half a log unit apart, the top graph being the lowest, of each of the four components underlying the responses of the opponent cells, (○ · · · · ○) +R and −R, (□– – –□) +Y and –Y; (Δ—Δ) +G and −G, (●— —●) +B and −B. See text for derivation of the components and method of computation.