Abstract

The perceived brightnesses of the maxima and minima in spatial sinusoidal light variations have been determined by suprathreshold psychophysical techniques in the photopic region. For example, the response/ stimulus contrast ratio at 20 cd/m2 average luminance and spatial frequencies between 1.5 to 7.5 lines/deg is 2.4 to 3.4 for 25% and 1.8 to 2.0 for 50% object contrast. Contrast transfer has a pronounced peak at about 5.5 lines/deg for all object contrasts. The visual system is nonlinear and a contrast transfer function does not exist in the photopic region. The measurements have been performed under normal viewing conditions where both successive and simultaneous contrast phenomena are operative.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Hartline, Am. J. Physiol. 130, 690 (1940).
  2. S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
    [PubMed]
  3. H. B. Barlow, J. Physiol. 119, 69 (1953).
  4. R. W. Ditchburn, D. H. Fender, and S. Mayne, J. Physiol. 145, 98 (1959).
  5. R. W. Ditchburn, Opt. Acta 1, 171 (1955).
    [Crossref]
  6. O. Bryngdahl, Naturwiss. 51, 177 (1964).
    [Crossref]
  7. O. Bryngdahl, J. Opt. Soc. Am. 54, 1152 (1964).
    [Crossref]
  8. O. Bryngdahl, Kybernetik 2, 227 (1965).
    [Crossref] [PubMed]
  9. J. J. DePalma and E. M. Lowry, J. Opt. Soc. Am. 52, 328 (1962).
    [Crossref]
  10. K. Hiwatashi, A. Watanabe, T. Mori, and S. Nagata, Tech. J. Japan Broadcasting Corp. 16, 38 (1964).
  11. M. Davidson and T. N. Cornsweet, J. Opt. Soc. Am. 54, 580 (1964).
  12. F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).
  13. G. F. Doughty, R. L. Porteous, and F. J. B. Wall, J. Phot. Sci. 12, 214 (1964).
  14. D. G. Green and F. W. Campbell, J. Opt. Soc. Am. 55, 1154 (1965).
    [Crossref]
  15. F. W. Campbell and D. G. Green, Nature 208, 191 (1965).
    [Crossref] [PubMed]
  16. E. Menzel, J. Proske, and H. D. Wallheinke, Optik 23, 169 (1965).

1965 (4)

O. Bryngdahl, Kybernetik 2, 227 (1965).
[Crossref] [PubMed]

D. G. Green and F. W. Campbell, J. Opt. Soc. Am. 55, 1154 (1965).
[Crossref]

F. W. Campbell and D. G. Green, Nature 208, 191 (1965).
[Crossref] [PubMed]

E. Menzel, J. Proske, and H. D. Wallheinke, Optik 23, 169 (1965).

1964 (6)

K. Hiwatashi, A. Watanabe, T. Mori, and S. Nagata, Tech. J. Japan Broadcasting Corp. 16, 38 (1964).

M. Davidson and T. N. Cornsweet, J. Opt. Soc. Am. 54, 580 (1964).

F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).

G. F. Doughty, R. L. Porteous, and F. J. B. Wall, J. Phot. Sci. 12, 214 (1964).

O. Bryngdahl, Naturwiss. 51, 177 (1964).
[Crossref]

O. Bryngdahl, J. Opt. Soc. Am. 54, 1152 (1964).
[Crossref]

1962 (1)

1959 (1)

R. W. Ditchburn, D. H. Fender, and S. Mayne, J. Physiol. 145, 98 (1959).

1955 (1)

R. W. Ditchburn, Opt. Acta 1, 171 (1955).
[Crossref]

1953 (2)

S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
[PubMed]

H. B. Barlow, J. Physiol. 119, 69 (1953).

1940 (1)

H. K. Hartline, Am. J. Physiol. 130, 690 (1940).

Barlow, H. B.

H. B. Barlow, J. Physiol. 119, 69 (1953).

Bryngdahl, O.

O. Bryngdahl, Kybernetik 2, 227 (1965).
[Crossref] [PubMed]

O. Bryngdahl, J. Opt. Soc. Am. 54, 1152 (1964).
[Crossref]

O. Bryngdahl, Naturwiss. 51, 177 (1964).
[Crossref]

Campbell, F. W.

D. G. Green and F. W. Campbell, J. Opt. Soc. Am. 55, 1154 (1965).
[Crossref]

F. W. Campbell and D. G. Green, Nature 208, 191 (1965).
[Crossref] [PubMed]

F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).

Cornsweet, T. N.

M. Davidson and T. N. Cornsweet, J. Opt. Soc. Am. 54, 580 (1964).

Davidson, M.

M. Davidson and T. N. Cornsweet, J. Opt. Soc. Am. 54, 580 (1964).

DePalma, J. J.

Ditchburn, R. W.

R. W. Ditchburn, D. H. Fender, and S. Mayne, J. Physiol. 145, 98 (1959).

R. W. Ditchburn, Opt. Acta 1, 171 (1955).
[Crossref]

Doughty, G. F.

G. F. Doughty, R. L. Porteous, and F. J. B. Wall, J. Phot. Sci. 12, 214 (1964).

Fender, D. H.

R. W. Ditchburn, D. H. Fender, and S. Mayne, J. Physiol. 145, 98 (1959).

Green, D. G.

Hartline, H. K.

H. K. Hartline, Am. J. Physiol. 130, 690 (1940).

Hiwatashi, K.

K. Hiwatashi, A. Watanabe, T. Mori, and S. Nagata, Tech. J. Japan Broadcasting Corp. 16, 38 (1964).

Kuffler, S. W.

S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
[PubMed]

Lowry, E. M.

Mayne, S.

R. W. Ditchburn, D. H. Fender, and S. Mayne, J. Physiol. 145, 98 (1959).

Menzel, E.

E. Menzel, J. Proske, and H. D. Wallheinke, Optik 23, 169 (1965).

Mori, T.

K. Hiwatashi, A. Watanabe, T. Mori, and S. Nagata, Tech. J. Japan Broadcasting Corp. 16, 38 (1964).

Nagata, S.

K. Hiwatashi, A. Watanabe, T. Mori, and S. Nagata, Tech. J. Japan Broadcasting Corp. 16, 38 (1964).

Porteous, R. L.

G. F. Doughty, R. L. Porteous, and F. J. B. Wall, J. Phot. Sci. 12, 214 (1964).

Proske, J.

E. Menzel, J. Proske, and H. D. Wallheinke, Optik 23, 169 (1965).

Robson, J. G.

F. W. Campbell and J. G. Robson, J. Opt. Soc. Am. 54, 581 (1964).

Wall, F. J. B.

G. F. Doughty, R. L. Porteous, and F. J. B. Wall, J. Phot. Sci. 12, 214 (1964).

Wallheinke, H. D.

E. Menzel, J. Proske, and H. D. Wallheinke, Optik 23, 169 (1965).

Watanabe, A.

K. Hiwatashi, A. Watanabe, T. Mori, and S. Nagata, Tech. J. Japan Broadcasting Corp. 16, 38 (1964).

Am. J. Physiol. (1)

H. K. Hartline, Am. J. Physiol. 130, 690 (1940).

J. Neurophysiol. (1)

S. W. Kuffler, J. Neurophysiol. 16, 37 (1953).
[PubMed]

J. Opt. Soc. Am. (5)

J. Phot. Sci. (1)

G. F. Doughty, R. L. Porteous, and F. J. B. Wall, J. Phot. Sci. 12, 214 (1964).

J. Physiol. (2)

H. B. Barlow, J. Physiol. 119, 69 (1953).

R. W. Ditchburn, D. H. Fender, and S. Mayne, J. Physiol. 145, 98 (1959).

Kybernetik (1)

O. Bryngdahl, Kybernetik 2, 227 (1965).
[Crossref] [PubMed]

Nature (1)

F. W. Campbell and D. G. Green, Nature 208, 191 (1965).
[Crossref] [PubMed]

Naturwiss. (1)

O. Bryngdahl, Naturwiss. 51, 177 (1964).
[Crossref]

Opt. Acta (1)

R. W. Ditchburn, Opt. Acta 1, 171 (1955).
[Crossref]

Optik (1)

E. Menzel, J. Proske, and H. D. Wallheinke, Optik 23, 169 (1965).

Tech. J. Japan Broadcasting Corp. (1)

K. Hiwatashi, A. Watanabe, T. Mori, and S. Nagata, Tech. J. Japan Broadcasting Corp. 16, 38 (1964).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

F. 1
F. 1

Schematic diagram of the experimental setup for determination of the brightness response to the extreme levels in a spatial sine-wave stimulus showing the illumination systems for the different parts of the viewing field. For notation see text.

F. 2
F. 2

Field of view seen by the subject. The luminance of the upper (comparison) field is varied in the experiments so that its brightness matches the brightness of the maximum and minimum, sequentially, of the sine-wave distribution.

F. 3
F. 3

Subjectively measured values of the maxima and minima in the response to a spatial, sinusoidally varying stimulus distribution with an average luminance of 5.0 cd/m2 and a spatial frequency of 0.00945 (●; ––), 0.0195 (○;– – –), 0.0390 (▲;–·–·–), 0.0775 (△;–··––··–), and 0.129 lines/min of arc (×;⋯⋯) as a function of object contrast for subject OB.The extreme values of the stimulus are represented by the straight dashed lines. Artificial-pupil diameter, 2 mm.

F. 4
F. 4

Subjectively measured values of the maxima and minima in the response to a spatial, sinusoidally varying stimulus distribution with an average luminance of 10.0 cd/m2 and a spatial frequency of 0.00945 (●; ––), 0.0195 (○;– – –), 0.0390 (▲;–·–·–), 0.0775 (△;–··––··–), and 0.129 lines/min of arc (×;⋯⋯) as a function of object contrast for subject OB. The extreme values of the stimulus are represented by the straight dashed lines. Artificial-pupil diameter, 2 mm.

F. 5
F. 5

Subjectively measured values of the maxima and minima in the response to a spatial, sinusoidally varying stimulus distribution with an average luminance of 20.0 cd/m2 and a spatial frequency of 0.00945 (●; ––), 0.0195 (○;– – –), 0.0390 (▲;–·–·–), 0.0775 (△;–··––··–), and 0.129 lines/min of arc (×;⋯⋯) as a function of object contrast for subject OB. The extreme values of the stimulus are represented by the straight dashed lines. Artificial-pupil diameter, 2 mm.

F. 6
F. 6

Subjective-to-object contrast ratio as a function of object contrast for a spatial, sinusoidally varying stimulus with 5.0-cd/m2 average luminance and a spatial frequency of 0.00945 (●; ––), 0.0195 (○;– – –), 0.0390 (▲;–·–·–), 0.0775 (△;–··––··–), and 0.129 lines/min of arc (×;⋯⋯), for subject OB. The broken-line hyperbola represents maximum possible contrast ratio. Artificial-pupil diameter, 2 mm.

F. 7
F. 7

Subjective-to-object contrast ratio as a function of object contrast for a spatial, sinusoidally varying stimulus with 10.0-cd/m2 average luminance and a spatial frequency of 0.00945 (●; ––), 0.0195 (○;– – –), 0.0390 (▲;–·–·–), 0.0775 (△;–··––··–), and 0.129 lines/min of arc (×;⋯⋯), for subject OB. The broken-line hyperbola represents maximum possible contrast ratio. Artificial-pupil diameter, 2 mm.

F. 8
F. 8

Subjective-to-object contrast ratio as a function of object contrast for a spatial, sinusoidally varying stimulus with 20.0-cd/m2 average luminance and a spatial frequency of 0.00945 (●; ––), 0.0195 (○;– – –), 0.0390 (▲;–·–·–), 0.0775 (△;–··––··–), and 0.129 lines/min of arc (×;⋯⋯), for subject OB. The broken-line hyperbola represents maximum possible contrast ratio. Artificial-pupil diameter, 2 mm.

F. 9
F. 9

Subjective-to-object peak-to-peak: ratio as a function of object contrast of the spatial, sinusoidally varying stimulus with 5.0-cd/m2 average luminance and a spatial frequency of 0.00945 (●; ––), 0.0195 (○;– – –), 0.0390 (▲;–·–·–), 0.0775 (△;–··––··–), and 0.129 lines/min of arc (×;⋯⋯), for subject OB. Artificial-pupil diameter, 2 mm.

F. 10
F. 10

Subjective-to-object peak-to-peak ratio as a function of object contrast of the spatial, sinusoidally varying stimulus with 10.0-cd/m2 average luminance and a spatial frequency of 0.00945 (●; ––), 0.0195 (○;– – –), 0.0390 (▲;–·–·–), 0.0755 (△;–··––··–), and 0.129 lines/min of arc (×;⋯⋯), for subject OB. Artificial-pupil diameter, 2 mm.

F. 11
F. 11

Subjective-to-object peak-to-peak ratio as a function of object contrast of the spatial, sinusoidally varying stimulus with 20.0-cd/m2 average luminance and a spatial frequency of 0.00945 (●; ––), 0.0195 (○;– – –), 0.0390 (▲;–·–·–), 0.0775 (△;–··––··–), and 0.129 lines/min of arc (×;⋯⋯), for subject OB. Artificial-pupil diameter, 2 mm.

F. 12
F. 12

Subjective-to-object contrast ratio as a function of spatial frequency for a spatial, sinusoidally varying stimulus with an average luminance of 5.0 cd/m2 and an object contrast of 0.50 (●; ––), 0.40 (○;– – –), 0.30 (▲;–·–·–), and 0.20 (△;⋯⋯), for subject OB. Artificial-pupil diameter, 2 mm.

F. 13
F. 13

Subjective-to-object contrast ratio as a function of spatial frequency for a spatial, sinusoidally varying stimulus with an average luminance of 10.0 cd/m2 and an object contrast of 0.50 (●; ––), 0.40 (○;– – –), 0.30 (▲;–·–·–), and 0.20 (△;⋯⋯), for subject OB. Artificial-pupil diameter, 2 mm.

F. 14
F. 14

Subjective-to-object contrast ratio as a function of spatial frequency for a spatial, sinusoidally varying stimulus with an average luminance of 20.0 cd/m2 and an object contrast of 0.50 (●; ––), 0.40 (○;– – –), 0.30 (▲;–·–·–), and 0.20 (△;⋯⋯), for subject OB. Artificial-pupil diameter, 2 mm.

Tables (2)

Tables Icon

Table I Spatial frequency and wavelength values of the sine-wave luminance distributions used in the experiments.

Tables Icon

Table II Average luminances and corresponding retinal luminances of the sinusoidally varying spatial stimuli used.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Object Contrast C o = ( I max I min ) / ( I max + I min ) ,
Subjective Contrast C s = ( B max B min ) / ( B max + B min ) ,
Peak to Peak Ratio Δ B / Δ I = ( B max B min ) / ( I max I min ) ; Contrast Ratio C s ( ν ) / C o ( ν ) ,