Abstract

Pulsed magnetic fields of ∼270 kG which are repeatable to <1% from pulse to pulse have been used to produce the Zeeman effect in a number of electronic transitions for O ii, O iii, Si i, Si iii, Si iv, Cu ii, C i, C iii, Ca ii, Mg i, Mg ii, and B i. The reliability of the method has been checked by comparison of the resulting experimental g values both with theoretical Landé g factors and, when data exist, with earlier Zeeman work performed using conventional field strengths (∼25 kG). A total of 109 previously unpublished g values are reported, with the listings for the above, oxygen and silicon species being the more complete. The over-all uncertainty in the reported g values is believed to be in the range 1%–3%. While the magnet has been used above 400 kG in other experiments, assymetries were becoming apparent below 300 kG. Therefore, data for this work was restricted to 270 kG where strong LS coupling was observed to hold with few exceptions (primarily 3d terms of O ii). It is believed the method described should be of most utility in the determination of atomic transition types from their characteristic Zeeman patterns.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (71)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription