Abstract

Time-resolution techniques have been used to observe self-reversal of iron lines as a function of time. The spectrum of iron was excited with an electronically regulated ac arc source controlled to a high precision in time at currents up to 200 A. Time resolution was achieved with the aid of a disk, having an Archimedes spiral slot, rotating in front of the slit of a 2-m Ebert spectrograph. In the present spectral region, two types of self-reversed iron lines could be easily distinguished for transitions terminating on levels above the ground state. For lines terminating on the a5F levels, the width of the self-absorbed core is greatest at the end of the discharge. For lines terminating on levels above a5F, the self-reversed core either disappears or becomes very narrow at the end of the discharge.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Crosswhite, Spectrochim. Acta 4, 122 (1950–52).
    [CrossRef]
  2. G. H. Dieke and H. M. Crosswhite, J. Opt. Soc. Am. 33, 425 (1943).
    [CrossRef]
  3. E. S. Hodge, Soc. Appl. Spectry. Bull. 5, 4 (1951).
  4. J. K. Hurwitz and J. Convey, J. Opt. Soc. Am. 42, 24 (1952).
    [CrossRef]
  5. E. F. Worden, R. G. Gutmacher, and J. G. Conway, Appl. Opt. 2, 707 (1963).
    [CrossRef]
  6. L. H. Ahrens and S. R. Taylor, Spectrochemical Analysis (Addison Wesley Publ. Co., Inc., Reading, Mass., 1961), second ed.
  7. R. D. Cowan and G. H. Dieke, Rev. Mod. Phys. 20, 418 (1948).
    [CrossRef]
  8. J. Sugar, J. Res. Natl. Bur. Std. (U. S.) 66A, 321 (1962).
    [CrossRef]
  9. D. W. Steinhaus, H. M. Crosswhite, and G. H. Dieke, J. Opt. Soc. Am. 43, 257 (1953).
    [CrossRef]
  10. Á. Bardócz, Appl. Spectry. 11, 167 (1959).
    [CrossRef]
  11. Á. Bardócz, Rev. Univ. Mines 15, 344 (1959).
  12. Á. Bardócz, Spectrochim. Acta 7, 238 (1955).
    [CrossRef]
  13. Á. Bardócz, Spectrochim. Acta 8, 152 (1956).
    [CrossRef]
  14. H. N. Russell and C. E. Moore, Trans. Am. Phys. Soc. 34, 113 (1944).

1963 (1)

1962 (1)

J. Sugar, J. Res. Natl. Bur. Std. (U. S.) 66A, 321 (1962).
[CrossRef]

1959 (2)

Á. Bardócz, Appl. Spectry. 11, 167 (1959).
[CrossRef]

Á. Bardócz, Rev. Univ. Mines 15, 344 (1959).

1956 (1)

Á. Bardócz, Spectrochim. Acta 8, 152 (1956).
[CrossRef]

1955 (1)

Á. Bardócz, Spectrochim. Acta 7, 238 (1955).
[CrossRef]

1953 (1)

1952 (1)

1951 (1)

E. S. Hodge, Soc. Appl. Spectry. Bull. 5, 4 (1951).

1948 (1)

R. D. Cowan and G. H. Dieke, Rev. Mod. Phys. 20, 418 (1948).
[CrossRef]

1944 (1)

H. N. Russell and C. E. Moore, Trans. Am. Phys. Soc. 34, 113 (1944).

1943 (1)

Ahrens, L. H.

L. H. Ahrens and S. R. Taylor, Spectrochemical Analysis (Addison Wesley Publ. Co., Inc., Reading, Mass., 1961), second ed.

Bardócz, Á.

Á. Bardócz, Appl. Spectry. 11, 167 (1959).
[CrossRef]

Á. Bardócz, Rev. Univ. Mines 15, 344 (1959).

Á. Bardócz, Spectrochim. Acta 8, 152 (1956).
[CrossRef]

Á. Bardócz, Spectrochim. Acta 7, 238 (1955).
[CrossRef]

Convey, J.

Conway, J. G.

Cowan, R. D.

R. D. Cowan and G. H. Dieke, Rev. Mod. Phys. 20, 418 (1948).
[CrossRef]

Crosswhite, H. M.

Dieke, G. H.

Gutmacher, R. G.

Hodge, E. S.

E. S. Hodge, Soc. Appl. Spectry. Bull. 5, 4 (1951).

Hurwitz, J. K.

Moore, C. E.

H. N. Russell and C. E. Moore, Trans. Am. Phys. Soc. 34, 113 (1944).

Russell, H. N.

H. N. Russell and C. E. Moore, Trans. Am. Phys. Soc. 34, 113 (1944).

Steinhaus, D. W.

Sugar, J.

J. Sugar, J. Res. Natl. Bur. Std. (U. S.) 66A, 321 (1962).
[CrossRef]

Taylor, S. R.

L. H. Ahrens and S. R. Taylor, Spectrochemical Analysis (Addison Wesley Publ. Co., Inc., Reading, Mass., 1961), second ed.

Worden, E. F.

Appl. Opt. (1)

Appl. Spectry. (1)

Á. Bardócz, Appl. Spectry. 11, 167 (1959).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Res. Natl. Bur. Std. (U. S.) (1)

J. Sugar, J. Res. Natl. Bur. Std. (U. S.) 66A, 321 (1962).
[CrossRef]

Rev. Mod. Phys. (1)

R. D. Cowan and G. H. Dieke, Rev. Mod. Phys. 20, 418 (1948).
[CrossRef]

Rev. Univ. Mines (1)

Á. Bardócz, Rev. Univ. Mines 15, 344 (1959).

Soc. Appl. Spectry. Bull. (1)

E. S. Hodge, Soc. Appl. Spectry. Bull. 5, 4 (1951).

Spectrochim. Acta (3)

H. M. Crosswhite, Spectrochim. Acta 4, 122 (1950–52).
[CrossRef]

Á. Bardócz, Spectrochim. Acta 7, 238 (1955).
[CrossRef]

Á. Bardócz, Spectrochim. Acta 8, 152 (1956).
[CrossRef]

Trans. Am. Phys. Soc. (1)

H. N. Russell and C. E. Moore, Trans. Am. Phys. Soc. 34, 113 (1944).

Other (1)

L. H. Ahrens and S. R. Taylor, Spectrochemical Analysis (Addison Wesley Publ. Co., Inc., Reading, Mass., 1961), second ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

F. 1
F. 1

Experimental arrangement for the production of time-resolved spectra. Electric circuit: Electronically controlled ac-arc source. F = analytical gap. M1, M2, M3 = imaging lenses. N = rotating disk for time resolution. O=magnetic pick-up. B-M4-M5-G-MG-P = 2-m Ebert spectrograph.

F. 2
F. 2

Rotating disk N with aperture V for time resolution. B = slit of the spectrograph.

F. 3
F. 3

ac-arc spectra of iron. Top spectrum—5A; Middle spectrum—200 A; bottom spectrum—same as middle spectrum but time resolved.

F. 4
F. 4

Microphotometer traces of the spectrograms in Fig. 3. First: a trace of the middle spectrogram in Fig. 3. Subsequent four: traces taken from the time-resolved spectrograms in Fig. 3 at time intervals of 0.001 sec. T = transmittance.

Tables (1)

Tables Icon

Table I Wavelengths and excitation potentials for Fe i lines.