Abstract

A Grubb Parsons interferometric spectrometer has been modified for low-temperature solid-state studies in the spectral region of 5 to 400 wavenumbers. The cryogenic, spectrographic, and computational techniques are considered in detail.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. L. Richards, J. Opt. Soc. Am. 54, 1474 (1964).
    [Crossref]
  2. Sir Howard Grubb Parsons and Co. Ltd., Walkergate, Newcastle upon Tyne 6, England.
  3. Phillips Electrical Ltd. Lighting Division, Century House, Shaftesbury Avenue, London, W.C.2, England.
  4. R. C. Ohlman, P. L. Richards, and M. Tinkham, J. Opt. Soc. Am. 48, 531 (1958).
    [Crossref]
  5. D. W. Williamson, J. Opt. Soc. Am. 42, 712 (1952).
    [Crossref]
  6. Edward J. Walker, Rev. Sci. Instr. 30, 8341 (1959).
    [Crossref]
  7. C. T. Lane, Henry A. Fairbank, and William M. Fairbank, Phys. Rev. 71, 600 (1947).
    [Crossref]
  8. Lawrence E. Kinsler and Austin R. Frey, Fundamentals of Acoustics (John Wiley & Sons, Inc., New York, 1950), Chap. 8, p. 217.
  9. H. A. Kramers, Physica 15, 971 (1949).
    [Crossref]
  10. Robert L. Powell and William A. Blanpied, Thermal Conductivity of Metals and Alloys at Low Temperatures, NBS Circular 556, 1September, 1954, p. 21.
  11. Eitel-McCullough, Inc., San Carlos, Calif.
  12. Frank J. Low, J. Opt. Soc. Am. 51, 1300 (1961).
    [Crossref]
  13. Lloyd P. Hunter, Handbook of Semi-Conductor Electronics (McGraw-Hill Book Co., Inc., New York, 1962).
  14. R. Clark Jones, J. Opt. Soc. Am. 43, 1 (1953)
    [Crossref]
  15. Seilon, Inc., Plastics Division, Newcomerstown, Ohio.
  16. Block Engineering, Inc., 19 Blackstone Street, Cambridge, Mass.
  17. A. S. Filler, J. Opt. Soc. Am. 54, 762 (1964).
    [Crossref]
  18. fortran listings of the transform and plotter programs and a fap listing of the cosine subroutine are made available to those who request them by communication with the authors.

1964 (2)

1961 (1)

1959 (1)

Edward J. Walker, Rev. Sci. Instr. 30, 8341 (1959).
[Crossref]

1958 (1)

1953 (1)

1952 (1)

1949 (1)

H. A. Kramers, Physica 15, 971 (1949).
[Crossref]

1947 (1)

C. T. Lane, Henry A. Fairbank, and William M. Fairbank, Phys. Rev. 71, 600 (1947).
[Crossref]

Blanpied, William A.

Robert L. Powell and William A. Blanpied, Thermal Conductivity of Metals and Alloys at Low Temperatures, NBS Circular 556, 1September, 1954, p. 21.

Clark Jones, R.

Fairbank, Henry A.

C. T. Lane, Henry A. Fairbank, and William M. Fairbank, Phys. Rev. 71, 600 (1947).
[Crossref]

Fairbank, William M.

C. T. Lane, Henry A. Fairbank, and William M. Fairbank, Phys. Rev. 71, 600 (1947).
[Crossref]

Filler, A. S.

Frey, Austin R.

Lawrence E. Kinsler and Austin R. Frey, Fundamentals of Acoustics (John Wiley & Sons, Inc., New York, 1950), Chap. 8, p. 217.

Hunter, Lloyd P.

Lloyd P. Hunter, Handbook of Semi-Conductor Electronics (McGraw-Hill Book Co., Inc., New York, 1962).

Kinsler, Lawrence E.

Lawrence E. Kinsler and Austin R. Frey, Fundamentals of Acoustics (John Wiley & Sons, Inc., New York, 1950), Chap. 8, p. 217.

Kramers, H. A.

H. A. Kramers, Physica 15, 971 (1949).
[Crossref]

Lane, C. T.

C. T. Lane, Henry A. Fairbank, and William M. Fairbank, Phys. Rev. 71, 600 (1947).
[Crossref]

Low, Frank J.

Ohlman, R. C.

Powell, Robert L.

Robert L. Powell and William A. Blanpied, Thermal Conductivity of Metals and Alloys at Low Temperatures, NBS Circular 556, 1September, 1954, p. 21.

Richards, P. L.

Tinkham, M.

Walker, Edward J.

Edward J. Walker, Rev. Sci. Instr. 30, 8341 (1959).
[Crossref]

Williamson, D. W.

J. Opt. Soc. Am. (6)

Phys. Rev. (1)

C. T. Lane, Henry A. Fairbank, and William M. Fairbank, Phys. Rev. 71, 600 (1947).
[Crossref]

Physica (1)

H. A. Kramers, Physica 15, 971 (1949).
[Crossref]

Rev. Sci. Instr. (1)

Edward J. Walker, Rev. Sci. Instr. 30, 8341 (1959).
[Crossref]

Other (9)

Sir Howard Grubb Parsons and Co. Ltd., Walkergate, Newcastle upon Tyne 6, England.

Phillips Electrical Ltd. Lighting Division, Century House, Shaftesbury Avenue, London, W.C.2, England.

Robert L. Powell and William A. Blanpied, Thermal Conductivity of Metals and Alloys at Low Temperatures, NBS Circular 556, 1September, 1954, p. 21.

Eitel-McCullough, Inc., San Carlos, Calif.

Lawrence E. Kinsler and Austin R. Frey, Fundamentals of Acoustics (John Wiley & Sons, Inc., New York, 1950), Chap. 8, p. 217.

fortran listings of the transform and plotter programs and a fap listing of the cosine subroutine are made available to those who request them by communication with the authors.

Seilon, Inc., Plastics Division, Newcomerstown, Ohio.

Block Engineering, Inc., 19 Blackstone Street, Cambridge, Mass.

Lloyd P. Hunter, Handbook of Semi-Conductor Electronics (McGraw-Hill Book Co., Inc., New York, 1962).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Simplified diagram of the interferometric spectrometer system.

Fig. 2
Fig. 2

Optical diagram of the original and modified spectrometer.

Fig. 3
Fig. 3

Spectrum of a 125-μ beamsplitter showing interference fringes with minima at 25, 50, and 75 cm−1. A cooled-quartz filter in the beam has reduced the energy transmitted at higher frequencies.

Fig. 4
Fig. 4

Diagram of sample chamber showing placement of samples in rotor. The rotor drive rod within the vacuum line is accessible at the Dewar top via a rotating vacuum seal. During a run the chamber is filled with liquid helium.

Fig. 5
Fig. 5

Detector assembly with sapphire window.

Fig. 6
Fig. 6

Plot of electrical power versus temperature for a Ge bolometer described in text. With only the unfiltered, room-temperature background power incident, the bolometer temperature is TB, from which the background power PB is determined to be 15×10−6 W.

Fig. 7
Fig. 7

Transmittance of a 0.483-mm-thick black polyethylene disk supplied by Block Engineering, Inc.15

Fig. 8
Fig. 8

Transmittance of a 1 2 -mm flat of sapphire showing interference fringes at low frequencies. The apparent rise of the transmittance above 100% is due to the detector sensitivity changing when the sample is placed in the beam.

Fig. 9
Fig. 9

Plot of index of refraction of the ordinary ray versus frequency for sapphire at 1.5°K. The solid circles are data from a 1 2 -mm-thick flat, while the open circles are from a 1-mm flat.

Fig. 10
Fig. 10

Transmittance of a 6-mm-thick slug of crystalline quartz at 1.5°K, without correction for the sensitivity change of the detector.

Fig. 11
Fig. 11

Spectral flux with a 6-mm crystal-quartz filter at 1.5°K and KBr filter at approximately 77°K.

Fig. 12
Fig. 12

Transmittance of a CsI 1-mm flat at 1.5°K with incident spectral distribution of Fig. 11. The transmittance has not been corrected for reflection losses or changes in detector sensitivity. The data plotter has drawn straight lines between the computed points, which are separated by 0.5 cm−1. The resolution is 1 cm−1.

Fig. 13
Fig. 13

Spectrum of a 5-μ beamsplitter transformed without (top) and with (bottom) subtraction of the constant I0.

Fig. 14
Fig. 14

Comparison of unapodized (top) and apodized (bottom) spectra of KBr flat. The resolution is 0.2 and 0.3 cm−1, respectively.

Tables (1)

Tables Icon

Table I Transmittance in the far infrared of materials at low temperatures.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R = R 0 e A / T ,
S = ( Z - R ) R L / ( 2 E ) ( R L + Z ) ,
G ( k ) = 0 I ( x ) cos ( 2 π k x ) d x ,
G ( k ) = i I ( x i ) cos ( 2 π k x i ) Δ x .
I ( x ) = V ( x ) + I 0 .
G ( k ) = 0 X V ( x ) cos ( 2 π k x ) d x + I 0 sin ( 2 π k X ) .
k = m ( Δ k ) ,             Δ k = 1 / 2 X ,