Abstract

Stimulated Brillouin scattering in gaseous nitrogen, methane, and carbon dioxide has been observed using a giant pulse laser and employing gas densities from 19 to 385 amagat. Stimulated Brillouin scattering was also observed in carbon-dioxide liquid at 26°C and through the transition temperature. The density threshold below which no Brillouin scattering was observed was 56 amagat for nitrogen, 19 amagat for methane, 350 amagat for gaseous carbon dioxide, and 385 amagat for liquid carbon dioxide. The velocity of sound in each case increases markedly with increasing pressure. The velocity of sound extrapolated to 1 amagat density for nitrogen and methane agrees closely with the isothermal velocity. There is some evidence to indicate an amplitude dependence on the measured velocities.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Garmire and C. H. Townes, Appl. Phys. Letters 5, 841 (1964).
    [CrossRef]
  2. R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Letters 13, 334a (1964).
    [CrossRef]
  3. T. A. Wiggins, R. V. Wick, D. H. Rank, and A. H. Guenther, Appl. Opt. 4, 1203 (1965).
    [CrossRef]
  4. American Institute of Physics Handbook (McGraw-Hill Book Company, Inc., New York, 1957), Sec. 4-104.
  5. A. Michels, L. Lebesque, and S. R. DeGroot, Physica 13, 337 (1947).
    [CrossRef]
  6. A. Michels and C. Michels, Proc. Roy. Soc. (London) A153, 201 (1936).
  7. A. Michels and C. Michels, Proc. Roy. Soc. (London) A153, 214 (1936).
  8. C. A. Phillips, Proc. Roy. Soc. (London) A97, 225 (1920).
  9. A. Michels and C. Michels, Phil. Trans. Roy. Soc. (London) A231, 409 (1933).

1965 (1)

1964 (2)

E. Garmire and C. H. Townes, Appl. Phys. Letters 5, 841 (1964).
[CrossRef]

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Letters 13, 334a (1964).
[CrossRef]

1947 (1)

A. Michels, L. Lebesque, and S. R. DeGroot, Physica 13, 337 (1947).
[CrossRef]

1936 (2)

A. Michels and C. Michels, Proc. Roy. Soc. (London) A153, 201 (1936).

A. Michels and C. Michels, Proc. Roy. Soc. (London) A153, 214 (1936).

1933 (1)

A. Michels and C. Michels, Phil. Trans. Roy. Soc. (London) A231, 409 (1933).

1920 (1)

C. A. Phillips, Proc. Roy. Soc. (London) A97, 225 (1920).

Brewer, R. G.

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Letters 13, 334a (1964).
[CrossRef]

DeGroot, S. R.

A. Michels, L. Lebesque, and S. R. DeGroot, Physica 13, 337 (1947).
[CrossRef]

Garmire, E.

E. Garmire and C. H. Townes, Appl. Phys. Letters 5, 841 (1964).
[CrossRef]

Guenther, A. H.

Lebesque, L.

A. Michels, L. Lebesque, and S. R. DeGroot, Physica 13, 337 (1947).
[CrossRef]

Michels, A.

A. Michels, L. Lebesque, and S. R. DeGroot, Physica 13, 337 (1947).
[CrossRef]

A. Michels and C. Michels, Proc. Roy. Soc. (London) A153, 214 (1936).

A. Michels and C. Michels, Proc. Roy. Soc. (London) A153, 201 (1936).

A. Michels and C. Michels, Phil. Trans. Roy. Soc. (London) A231, 409 (1933).

Michels, C.

A. Michels and C. Michels, Proc. Roy. Soc. (London) A153, 201 (1936).

A. Michels and C. Michels, Proc. Roy. Soc. (London) A153, 214 (1936).

A. Michels and C. Michels, Phil. Trans. Roy. Soc. (London) A231, 409 (1933).

Phillips, C. A.

C. A. Phillips, Proc. Roy. Soc. (London) A97, 225 (1920).

Rank, D. H.

Rieckhoff, K. E.

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Letters 13, 334a (1964).
[CrossRef]

Townes, C. H.

E. Garmire and C. H. Townes, Appl. Phys. Letters 5, 841 (1964).
[CrossRef]

Wick, R. V.

Wiggins, T. A.

Appl. Opt. (1)

Appl. Phys. Letters (1)

E. Garmire and C. H. Townes, Appl. Phys. Letters 5, 841 (1964).
[CrossRef]

Phil. Trans. Roy. Soc. (London) (1)

A. Michels and C. Michels, Phil. Trans. Roy. Soc. (London) A231, 409 (1933).

Phys. Rev. Letters (1)

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Letters 13, 334a (1964).
[CrossRef]

Physica (1)

A. Michels, L. Lebesque, and S. R. DeGroot, Physica 13, 337 (1947).
[CrossRef]

Proc. Roy. Soc. (London) (3)

A. Michels and C. Michels, Proc. Roy. Soc. (London) A153, 201 (1936).

A. Michels and C. Michels, Proc. Roy. Soc. (London) A153, 214 (1936).

C. A. Phillips, Proc. Roy. Soc. (London) A97, 225 (1920).

Other (1)

American Institute of Physics Handbook (McGraw-Hill Book Company, Inc., New York, 1957), Sec. 4-104.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The sound velocity in gaseous nitrogen as a function of density.

Fig. 2
Fig. 2

The sound velocity in gaseous methane as a function of density.

Fig. 3
Fig. 3

The sound velocity in carbon dioxide as a function of density. The circles represent observed velocities in the gas. The squares represent observed velocities in the liquid.

Fig. 4
Fig. 4

The stimulated Brillouin frequency components resolved with a Fabry-Perot étalon with a spacer of 2.86 cm. Photograph (a) is the ring pattern resulting from stimulation of gaseous nitrogen at 27°C and 2080 psi. Photograph (b) is of gaseous methane at 27°C and 1500 psi. Photograph (c) is of gaseous carbon dioxide at 30°C and 1650 psi.

Tables (1)

Tables Icon

Table I The sound velocity measured at various densities of gaseous nitrogen, methane, and carbon dioxide and liquid carbon dioxide. Δν is the frequency shift of the Doppler components.