Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, J. J. Hopfield and D. G. Thomas, Phys. Rev. 132, 563, (1963).
    [CrossRef]
  2. See, for example, M. Born and E. Wolf, Principles of Optics, (Macmillan Co., New York, 1964), 2nd ed., Eq. (57), p. 48.

1963 (1)

See, for example, J. J. Hopfield and D. G. Thomas, Phys. Rev. 132, 563, (1963).
[CrossRef]

Born, M.

See, for example, M. Born and E. Wolf, Principles of Optics, (Macmillan Co., New York, 1964), 2nd ed., Eq. (57), p. 48.

Hopfield, J. J.

See, for example, J. J. Hopfield and D. G. Thomas, Phys. Rev. 132, 563, (1963).
[CrossRef]

Thomas, D. G.

See, for example, J. J. Hopfield and D. G. Thomas, Phys. Rev. 132, 563, (1963).
[CrossRef]

Wolf, E.

See, for example, M. Born and E. Wolf, Principles of Optics, (Macmillan Co., New York, 1964), 2nd ed., Eq. (57), p. 48.

Phys. Rev. (1)

See, for example, J. J. Hopfield and D. G. Thomas, Phys. Rev. 132, 563, (1963).
[CrossRef]

Other (1)

See, for example, M. Born and E. Wolf, Principles of Optics, (Macmillan Co., New York, 1964), 2nd ed., Eq. (57), p. 48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R = | 1 J 1 + J | 2 | ( 1 J ) 2 1 J 2 | 2 .
J σ = ± ( sin 2 θ ) 1 2 / cos θ
J π = ± J σ / .
R σ = | [ 1 ± ( 2 1 ) 1 2 ] 2 1 2 + 1 | 2 = | ± ( 2 1 ) 1 2 1 | 2
R π = | [ 1 ± ( 2 1 ) 1 2 / ] 2 1 ( 2 1 ) / 2 | 2 = | 2 ± 2 ( 2 1 ) 1 2 + 2 1 2 2 + 1 | 2 = | ( ± ( 2 1 ) 1 2 1 ) 2 | 2