Abstract

This paper reports an unexpected visual phenomenon. When a wide, photopic stimulus field is sinusoidally modulated in both space and time, over a certain frequency range the apparent spatial frequency of the stimulus is doubled. In its original form, the (deLange) flicker-fusion model which has been accepted by the author and others cannot account for this result. But it can be explained by assuming that there is a second (low-pass) filtering operation which follows the nonlinear (brightness) response of the visual system, rather than preceding it. If this hypothesis is correct, then the frequency-doubling effect is the result of neural mechanisms which are more central than the locus of flicker fusion.

© 1966 Optical Society of America

Full Article  |  PDF Article
Related Articles
Temporal covariance model of human motion perception

Jan P. H. van Santen and George Sperling
J. Opt. Soc. Am. A 1(5) 451-473 (1984)

Analysis of visual modulation sensitivity. V. Faster visual response for G- than for R-cone pathway?

Russell D. Hamer and Christopher W. Tyler
J. Opt. Soc. Am. A 9(11) 1889-1904 (1992)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription