Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Cooley and J. W. Tukey, Mathematics of Computation,  19, 297 (1965).
    [CrossRef]
  2. A program is available from IBM.
  3. L. Mertz, Transformations in Optics, Wiley & Sons, New York, 1965.

1965 (1)

J. W. Cooley and J. W. Tukey, Mathematics of Computation,  19, 297 (1965).
[CrossRef]

Cooley, J. W.

J. W. Cooley and J. W. Tukey, Mathematics of Computation,  19, 297 (1965).
[CrossRef]

Mertz, L.

L. Mertz, Transformations in Optics, Wiley & Sons, New York, 1965.

Tukey, J. W.

J. W. Cooley and J. W. Tukey, Mathematics of Computation,  19, 297 (1965).
[CrossRef]

Mathematics of Computation (1)

J. W. Cooley and J. W. Tukey, Mathematics of Computation,  19, 297 (1965).
[CrossRef]

Other (2)

A program is available from IBM.

L. Mertz, Transformations in Optics, Wiley & Sons, New York, 1965.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (4)

Equations on this page are rendered with MathJax. Learn more.

X ( j ) = k = 0 N - 1 A ( k ) exp [ 2 π i j k / N ] ;             j = 0 , 1 , , N - 1
C ( k ) = A ( 2 k ) + i A ( 2 k + 1 ) ;             k = 0 , 1 , , N - 1
2 X ( j ) = Y ( j ) + Y * ( N - j ) - i Z j [ Y ( j ) - Y * ( N - j ) ] Z = exp ( π i / N ) ;             j = 0 , 1 , , N - 1.
2 X ( N - j ) = [ Y ( j ) + Y * ( N - j ) ] * - i { Z j [ Y ( j ) - Y * ( N - j ) ] } * .