Abstract

Two methods for the determination of the mean size of polydispersions may be based on measurement of optical scattering cross section. The first requires a single spectral transmittance together with a knowledge of particle concentration obtained independently. This method is applicable for any ratio of particle size to wavelength. Both mean size and concentration can be measured by a spectrophotometric method, which is based on measurement of spectral transmittance at two suitably selected wavelengths. The spectrophotometric method is applicable to the measurement of mean particle size of either stationary or moving polydispersions and is particularly useful for the immediate evaluation of the mean size of a polydispersion which is inaccessible except to optical observation. These two methods of size measurement are demonstrated on polydispersions of known mean diameter in an aqueous suspension.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Dobbins and G. S. Jizmagian, J. Opt. Soc. Am. 56, 1345 (1966).
    [Crossref]
  2. R. M. Tabibian, W. Heller, and J. N. Epel, J. Colloid. Sci. 11, 195 (1956).
    [Crossref]
  3. W. Heller and W. J. Pangonis, J. Phys. Chem. 22, 948 (1954).
    [Crossref]

1966 (1)

1956 (1)

R. M. Tabibian, W. Heller, and J. N. Epel, J. Colloid. Sci. 11, 195 (1956).
[Crossref]

1954 (1)

W. Heller and W. J. Pangonis, J. Phys. Chem. 22, 948 (1954).
[Crossref]

Dobbins, R. A.

Epel, J. N.

R. M. Tabibian, W. Heller, and J. N. Epel, J. Colloid. Sci. 11, 195 (1956).
[Crossref]

Heller, W.

R. M. Tabibian, W. Heller, and J. N. Epel, J. Colloid. Sci. 11, 195 (1956).
[Crossref]

W. Heller and W. J. Pangonis, J. Phys. Chem. 22, 948 (1954).
[Crossref]

Jizmagian, G. S.

Pangonis, W. J.

W. Heller and W. J. Pangonis, J. Phys. Chem. 22, 948 (1954).
[Crossref]

Tabibian, R. M.

R. M. Tabibian, W. Heller, and J. N. Epel, J. Colloid. Sci. 11, 195 (1956).
[Crossref]

J. Colloid. Sci. (1)

R. M. Tabibian, W. Heller, and J. N. Epel, J. Colloid. Sci. 11, 195 (1956).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

W. Heller and W. J. Pangonis, J. Phys. Chem. 22, 948 (1954).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of optical apparatus.

Fig. 2
Fig. 2

Electron micrograph of monodispersed polystyrene particles.

Fig. 3
Fig. 3

Mean scattering cross section vs volume-surface mean diameter. (ml=1.33, mp/ml=1.20, λ=1.01 μ).

Fig. 4
Fig. 4

Ratio of mean scattering coefficients vs volume–surface mean diameter (ml=1.33, mp/ml=1.20, λ1′=0.365 μ, λ2′=1.01 μ).

Tables (5)

Tables Icon

Table I Data on polystyrene monodispersions.

Tables Icon

Table II Comparison of theoretical and experimental values of scattering coefficient. λ′=0.436 μ, ml=1.33.

Tables Icon

Table III Comparison of experimental and theoretical mean scattering coefficients of polydispersions.

Tables Icon

Table IV Comparison of actual particle size and size computed from one transmittance measurement of a polydispersion of known concentration.

Tables Icon

Table V Particle size and concentration as determined by spectrophotometric tests.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρ 32 = 2 ( m p - m l ) D 32 / λ ,
m = m p / m l ,
T = exp [ - ( 3 K C v / 2 D ) ] .
ln ( T 2 - 1 ) / ln ( T 1 - 1 ) = K ¯ ( λ 2 ) / K ¯ ( λ 1 ) ,
K ¯ ( λ i ) = K [ 2 ( m p - m l ) π D 32 / λ i , m p / m l ] .