Abstract

A new experimental method utilizing a property of the gas laser has been developed that permits the measurement of the variation of the time of flight of electrons through a photomultiplier as a function of the position on the cathode from which they are emitted. The measurement of time variation is accomplished by comparing it with the distance traveled by a light beam during the same time and is capable of a time resolution of approximately 10−11 sec.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Anderson, J. Opt. Soc. Am. 31, 187 (1941).
    [Crossref]
  2. D. Sinclair and M. P. Givens, J. Opt. Soc. Am. 54, 795 (1964).
    [Crossref]
  3. G. A. Morton and et al., IRE Trans. Nucl. Sci. 3, 98 (1958).
    [Crossref]
  4. G. Pietri, IRE Trans. Nucl. Sci. 3, 62 (1962).
    [Crossref]
  5. M. Birk and et al., IEEE Trans. Nucl. Sci. 3, 129 (1964).
    [Crossref]

1964 (2)

D. Sinclair and M. P. Givens, J. Opt. Soc. Am. 54, 795 (1964).
[Crossref]

M. Birk and et al., IEEE Trans. Nucl. Sci. 3, 129 (1964).
[Crossref]

1962 (1)

G. Pietri, IRE Trans. Nucl. Sci. 3, 62 (1962).
[Crossref]

1958 (1)

G. A. Morton and et al., IRE Trans. Nucl. Sci. 3, 98 (1958).
[Crossref]

1941 (1)

Anderson, W. J.

Birk, M.

M. Birk and et al., IEEE Trans. Nucl. Sci. 3, 129 (1964).
[Crossref]

Givens, M. P.

Morton, G. A.

G. A. Morton and et al., IRE Trans. Nucl. Sci. 3, 98 (1958).
[Crossref]

Pietri, G.

G. Pietri, IRE Trans. Nucl. Sci. 3, 62 (1962).
[Crossref]

Sinclair, D.

IEEE Trans. Nucl. Sci. (1)

M. Birk and et al., IEEE Trans. Nucl. Sci. 3, 129 (1964).
[Crossref]

IRE Trans. Nucl. Sci. (2)

G. A. Morton and et al., IRE Trans. Nucl. Sci. 3, 98 (1958).
[Crossref]

G. Pietri, IRE Trans. Nucl. Sci. 3, 62 (1962).
[Crossref]

J. Opt. Soc. Am. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental apparatus. AM, adjustable mirror; AF, amplifier; CL, collimating lens; FL, focusing lens; FM, fixed mirror; GL, gas laser; GR, grid; HP, helipot; LB, lens bench; LO, local oscillator; MX, mixer; PM, photomultiplier; RF, red filter; RP, rack and pinion mount; XYP, x, y plotter.

Fig. 2
Fig. 2

Transit-time variations in nanoseconds relative to the center of the cathode as viewed from the cathode end of the tube. Tube: RCA 5819; voltage: −750 V. The first dynode is symmetrical about the dashed axis, approximately 13° from keyway of tube socket.

Fig. 3
Fig. 3

Transit-time variations in nanoseconds plotted against cathode position for the 0°–180° axis of Fig. 2. Tube: RCA 5819; voltage: −750 V.

Fig. 4
Fig. 4

Contours of equal-transit-time variation in nanoseconds relative to the center of the cathode as viewed from the cathode end of the tube (interpolated from Fig. 2). Tube: RCA 5819; voltage: −750 V. Axis same as in Fig. 2.