Abstract

An absolute radiation standard is constructed for use between 200 and 2000 μ. It is demonstrated that the output is that of a blackbody over this wavelength range. The absolute standard is used to calibrate a secondary standard mercury-arc lamp which is found to have an equivalent temperature in the neighborhood of 3000°K. It is shown that absolute standards can be used either to determine the strength of an unknown signal directly or to calibrate the sensitivity of a monochromator-detector system.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. N. Harding, M. F. Kimmit, J. H. Ludlow, P. Porteous, A. C. Prior, and V. Roberts, Proc. Phys. Soc. (London) 77, 1069 (1961).
    [Crossref]
  2. A. J. Lichtenberg, S. Sesnic, and A. W. Trivelpiece, Phys. Rev. Letters 13, 387 (1964).
    [Crossref]
  3. G. B. Field, J. Geophys. Res. 64, 1169 (1959).
    [Crossref]
  4. W. L. Eisenman, R. L. Bates, and J. D. Merriam, J. Opt. Soc. Am. 53, 729 (1963).
    [Crossref]
  5. C. S. Williams, J. Opt. Soc. Am. 51, 564 (1961).
    [Crossref]
  6. E. H. Putley, J. Phys. Chem. Solids 22, 241 (1961).
    [Crossref]
  7. A. Gouffe, Rev. Opt. 24, Nos. 1–3 (1945).
  8. The restriction of small ϕ implies that the conical cavity is a blackbody only within a small angle of diverging rays. Since the monochromater used for the measurements accepts only a narrow cone of rays, the requirement was satisfied over the entire acceptance.
  9. J. C. De Vos, Physica 20, 669 (1954).
    [Crossref]
  10. Equation (3) follows directly from the general principle of conservation of phase space, A. J. Lichtenberg, Nucl. Inst. Methods 26, 243 (1964); but can also be proved geometrically.
    [Crossref]
  11. From these measurements it is also apparent that a hot glass plate can be used as a standard source, provided that high accuracy is not needed.
  12. For the detector responsivity given in Fig. 9 the radiation is taken to be that entering the LHe Dewar light pipe; thus the attenuation in the light pipe, and the loss in power due to reflection at the InSb crystal and absorption in the windows, are in-included in the over-all responsivity. In contrast, the responsivity reported by Putley does not include these losses. The actual responsivity of the InSb, itself, is at least a factor of 2 larger if these losses are included. However, it has not been possible to determine the losses exactly.

1964 (2)

A. J. Lichtenberg, S. Sesnic, and A. W. Trivelpiece, Phys. Rev. Letters 13, 387 (1964).
[Crossref]

Equation (3) follows directly from the general principle of conservation of phase space, A. J. Lichtenberg, Nucl. Inst. Methods 26, 243 (1964); but can also be proved geometrically.
[Crossref]

1963 (1)

1961 (3)

C. S. Williams, J. Opt. Soc. Am. 51, 564 (1961).
[Crossref]

E. H. Putley, J. Phys. Chem. Solids 22, 241 (1961).
[Crossref]

G. N. Harding, M. F. Kimmit, J. H. Ludlow, P. Porteous, A. C. Prior, and V. Roberts, Proc. Phys. Soc. (London) 77, 1069 (1961).
[Crossref]

1959 (1)

G. B. Field, J. Geophys. Res. 64, 1169 (1959).
[Crossref]

1954 (1)

J. C. De Vos, Physica 20, 669 (1954).
[Crossref]

1945 (1)

A. Gouffe, Rev. Opt. 24, Nos. 1–3 (1945).

Bates, R. L.

De Vos, J. C.

J. C. De Vos, Physica 20, 669 (1954).
[Crossref]

Eisenman, W. L.

Field, G. B.

G. B. Field, J. Geophys. Res. 64, 1169 (1959).
[Crossref]

Gouffe, A.

A. Gouffe, Rev. Opt. 24, Nos. 1–3 (1945).

Harding, G. N.

G. N. Harding, M. F. Kimmit, J. H. Ludlow, P. Porteous, A. C. Prior, and V. Roberts, Proc. Phys. Soc. (London) 77, 1069 (1961).
[Crossref]

Kimmit, M. F.

G. N. Harding, M. F. Kimmit, J. H. Ludlow, P. Porteous, A. C. Prior, and V. Roberts, Proc. Phys. Soc. (London) 77, 1069 (1961).
[Crossref]

Lichtenberg, A. J.

A. J. Lichtenberg, S. Sesnic, and A. W. Trivelpiece, Phys. Rev. Letters 13, 387 (1964).
[Crossref]

Equation (3) follows directly from the general principle of conservation of phase space, A. J. Lichtenberg, Nucl. Inst. Methods 26, 243 (1964); but can also be proved geometrically.
[Crossref]

Ludlow, J. H.

G. N. Harding, M. F. Kimmit, J. H. Ludlow, P. Porteous, A. C. Prior, and V. Roberts, Proc. Phys. Soc. (London) 77, 1069 (1961).
[Crossref]

Merriam, J. D.

Porteous, P.

G. N. Harding, M. F. Kimmit, J. H. Ludlow, P. Porteous, A. C. Prior, and V. Roberts, Proc. Phys. Soc. (London) 77, 1069 (1961).
[Crossref]

Prior, A. C.

G. N. Harding, M. F. Kimmit, J. H. Ludlow, P. Porteous, A. C. Prior, and V. Roberts, Proc. Phys. Soc. (London) 77, 1069 (1961).
[Crossref]

Putley, E. H.

E. H. Putley, J. Phys. Chem. Solids 22, 241 (1961).
[Crossref]

Roberts, V.

G. N. Harding, M. F. Kimmit, J. H. Ludlow, P. Porteous, A. C. Prior, and V. Roberts, Proc. Phys. Soc. (London) 77, 1069 (1961).
[Crossref]

Sesnic, S.

A. J. Lichtenberg, S. Sesnic, and A. W. Trivelpiece, Phys. Rev. Letters 13, 387 (1964).
[Crossref]

Trivelpiece, A. W.

A. J. Lichtenberg, S. Sesnic, and A. W. Trivelpiece, Phys. Rev. Letters 13, 387 (1964).
[Crossref]

Williams, C. S.

J. Geophys. Res. (1)

G. B. Field, J. Geophys. Res. 64, 1169 (1959).
[Crossref]

J. Opt. Soc. Am. (2)

J. Phys. Chem. Solids (1)

E. H. Putley, J. Phys. Chem. Solids 22, 241 (1961).
[Crossref]

Nucl. Inst. Methods (1)

Equation (3) follows directly from the general principle of conservation of phase space, A. J. Lichtenberg, Nucl. Inst. Methods 26, 243 (1964); but can also be proved geometrically.
[Crossref]

Phys. Rev. Letters (1)

A. J. Lichtenberg, S. Sesnic, and A. W. Trivelpiece, Phys. Rev. Letters 13, 387 (1964).
[Crossref]

Physica (1)

J. C. De Vos, Physica 20, 669 (1954).
[Crossref]

Proc. Phys. Soc. (London) (1)

G. N. Harding, M. F. Kimmit, J. H. Ludlow, P. Porteous, A. C. Prior, and V. Roberts, Proc. Phys. Soc. (London) 77, 1069 (1961).
[Crossref]

Rev. Opt. (1)

A. Gouffe, Rev. Opt. 24, Nos. 1–3 (1945).

Other (3)

The restriction of small ϕ implies that the conical cavity is a blackbody only within a small angle of diverging rays. Since the monochromater used for the measurements accepts only a narrow cone of rays, the requirement was satisfied over the entire acceptance.

From these measurements it is also apparent that a hot glass plate can be used as a standard source, provided that high accuracy is not needed.

For the detector responsivity given in Fig. 9 the radiation is taken to be that entering the LHe Dewar light pipe; thus the attenuation in the light pipe, and the loss in power due to reflection at the InSb crystal and absorption in the windows, are in-included in the over-all responsivity. In contrast, the responsivity reported by Putley does not include these losses. The actual responsivity of the InSb, itself, is at least a factor of 2 larger if these losses are included. However, it has not been possible to determine the losses exactly.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Internal cross sections of blackbodies.

Fig. 2
Fig. 2

Cross section of complete conical blackbody.

Fig. 3
Fig. 3

Schematic diagram of the spectrometer. MG, Main grating; GF, grating filter; SM, spherical mirror; PM, plane mirror; TF, transmitter filter; LP, light pipe.

Fig. 4
Fig. 4

Block diagram of complete system.

Fig. 5
Fig. 5

Detector output voltage for blackbodies and mercury discharge; Upper curve, mercury arc lamp; lower curves: solid line, cylindrical; dashed line, conical; dashed and dotted, glass conical.

Fig. 6
Fig. 6

Reflectance of soot-coated cast iron and flint glass. upper, sooted iron; lower, glass.

Fig. 7
Fig. 7

Variation of detector output with aperature.

Fig. 8
Fig. 8

Equivalent blackbody temperature of mercury lamp as a function of frequency.

Fig. 9
Fig. 9

Responsivity in volts/watt of InSb detector T = 2°K, Ibias = 90 μA, B = 12 kG.

Tables (1)

Tables Icon

Table I Comparison of emissivities for conical and cylindrical cavities.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

0 = 1 / ( 1 - s / S + s / S ) ,
0 = 1 - ( 1 - ) S / s .
D 1 sin θ 1 = D 2 sin θ 2 ,
V out = R d ( ν ) T m ( ν ) P B B ( ν ) ,