Abstract

The total or integrated absorptance A(ν) has been measured at 26°C for the ammonia bands near 950, 1628, and 3300 cm−1 in samples of pure ammonia and of ammonia mixed with nitrogen. The results are displayed graphically with A(ν) shown as a function of absorber concentration w and an equivalent pressure Pe, which depends upon the partial pressures of the two gases. The equivalent pressure of a given sample is expressed in terms of the total pressure of the sample, the partial pressure of ammonia, and a self-broadening coefficient B, which is related by simple kinetic theory to the ratio of the optical collision diameters of ammonia and nitrogen. The graphs can be used to predict the total absorptance of ammonia in any sample at laboratory temperature for which the values of w and Pe are known, provided these values lie within the range covered in the present study. Values have been obtained for the band strengths S=k(ν) for the absorption bands studied. The self-broadening coefficient B for ammonia is greater than the corresponding values for telluric gases obtained in earlier studies.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Howard, D. E. Burch, and D. Williams, J. Opt. Soc. Am. 46, 186, 237, 242, 334, 452 (1956).
    [CrossRef]
  2. D. E. Burch and D. Williams, Appl. Opt. 1, 473, 587 (1962).
    [CrossRef]
  3. D. E. Burch, D. A. Gryvnak, and D. Williams, Appl. Opt. 1, 759 (1962).
    [CrossRef]
  4. D. E. Burch, W. L. France, and D. Williams, Appl. Opt. 2, 585 (1963).
    [CrossRef]
  5. D. E. Burch and D. Williams, Appl. Opt. 3, 55 (1964).
    [CrossRef]
  6. G. P. Kuiper, Ed., The Atmospheres of the Earth and Planets (University of Chicago Press, Chicago, 1951), 2nd ed., p. 364.
  7. J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944); D. E. Burch, J. N. Howard, and D. Williams, Phys. Rev. 94, 1424 (1954); H. J. Babrov, J. Opt. Soc. Am. 51, 171 (1961).
    [CrossRef]
  8. D. E. Burch, E. B. Singleton, and D. Williams, Appl. Opt. 1, 359 (1962).
    [CrossRef]
  9. G. Herzberg, Molecular Spectra and Molecular Structure. II Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand Co., Inc., New York, 1945), pp. 295–296.
  10. W. M. Elsasser, Harvard Meteorological Studies No. 6 (Harvard University, Cambridge, Mass., 1942); R. M. Goody, Quart. J. Roy. Meteorol. Soc. 78, 165 (1952); G. N. Plass, J. Opt. Soc. Am. 48, 690 (1958).
    [CrossRef]
  11. G. N. Plass, J. Opt. Soc. Am. 50, 868 (1960).
    [CrossRef]

1964 (1)

1963 (1)

1962 (3)

1960 (1)

1956 (1)

1944 (1)

J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944); D. E. Burch, J. N. Howard, and D. Williams, Phys. Rev. 94, 1424 (1954); H. J. Babrov, J. Opt. Soc. Am. 51, 171 (1961).
[CrossRef]

Burch, D. E.

Dale, E. B.

J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944); D. E. Burch, J. N. Howard, and D. Williams, Phys. Rev. 94, 1424 (1954); H. J. Babrov, J. Opt. Soc. Am. 51, 171 (1961).
[CrossRef]

Elsasser, W. M.

W. M. Elsasser, Harvard Meteorological Studies No. 6 (Harvard University, Cambridge, Mass., 1942); R. M. Goody, Quart. J. Roy. Meteorol. Soc. 78, 165 (1952); G. N. Plass, J. Opt. Soc. Am. 48, 690 (1958).
[CrossRef]

France, W. L.

Gryvnak, D. A.

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure. II Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand Co., Inc., New York, 1945), pp. 295–296.

Howard, J. N.

Nielsen, J. R.

J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944); D. E. Burch, J. N. Howard, and D. Williams, Phys. Rev. 94, 1424 (1954); H. J. Babrov, J. Opt. Soc. Am. 51, 171 (1961).
[CrossRef]

Plass, G. N.

Singleton, E. B.

Thornton, V.

J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944); D. E. Burch, J. N. Howard, and D. Williams, Phys. Rev. 94, 1424 (1954); H. J. Babrov, J. Opt. Soc. Am. 51, 171 (1961).
[CrossRef]

Williams, D.

Appl. Opt. (5)

J. Opt. Soc. Am. (2)

Rev. Mod. Phys. (1)

J. R. Nielsen, V. Thornton, and E. B. Dale, Rev. Mod. Phys. 16, 307 (1944); D. E. Burch, J. N. Howard, and D. Williams, Phys. Rev. 94, 1424 (1954); H. J. Babrov, J. Opt. Soc. Am. 51, 171 (1961).
[CrossRef]

Other (3)

G. Herzberg, Molecular Spectra and Molecular Structure. II Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand Co., Inc., New York, 1945), pp. 295–296.

W. M. Elsasser, Harvard Meteorological Studies No. 6 (Harvard University, Cambridge, Mass., 1942); R. M. Goody, Quart. J. Roy. Meteorol. Soc. 78, 165 (1952); G. N. Plass, J. Opt. Soc. Am. 48, 690 (1958).
[CrossRef]

G. P. Kuiper, Ed., The Atmospheres of the Earth and Planets (University of Chicago Press, Chicago, 1951), 2nd ed., p. 364.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Typical spectra of ammonia samples in the 950-cm−1 region.

Fig. 2
Fig. 2

Total absorptance in the 950-cm−1 region as a function of equivalent pressure for various samples having constant absorber concentration.

Fig. 3
Fig. 3

Total absorptance of the 950-cm−1 region as a function of equivalent pressure for samples in which absorber concentration is proportional to equivalent pressure.

Fig. 4
Fig. 4

Total absorptance in the 950-cm−1 region for various values of equivalent pressure as a function of absorber concentration.

Fig. 5
Fig. 5

Typical spectra of ammonia samples in the 1628-cm−1 region.

Fig. 6
Fig. 6

Total absorptance in the 1628-cm−1 region for various values of equivalent pressure as a function of absorber concentration.

Fig. 7
Fig. 7

Typical spectra of ammonia samples in the 3300-cm−1 region.

Fig. 8
Fig. 8

Total absorptance in the 3300-cm−1 region for various values of equivalent pressure as a function of absorber concentration.

Tables (1)

Tables Icon

Table I Comparison of band parameters of various absorbing gases.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P e = P + ( B - 1 ) p a ,
S = k ( ν ) d ν = ( 1 / w ) A ( ν ) d ν ,