Abstract

The infrared spectra of H2O and D2O in the liquid state at ambient temperature (30°C) have been remapped in the spectral region between 10 and 330 μ. The major features observed were extremely intense absorption bands with maxima at 685 and 505 cm−1 in H2O and D2O, respectively. These major bands are overlapped at the low-frequency ends by much less intense bands producing transmittance minima near 193 and 187 cm−1, respectively. No evidence was obtained for the series of narrow bands recently reported by Stanevich and Yaroslavskii. Extinction coefficients have been determined for the range 170–50 cm−1 and are compared with recent data; present data on linear absorption coefficients for H2O in the range 1500–1100 cm−1 are in fair agreement with the results of previous workers. The influence of temperature variations on the frequencies of infrared bands has been studied for all bands in the region between 4000 and 32 cm−1. Theoretical interpretation of the results is discussed briefly.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. E. Dorsey, Properties of the Ordinary Water Substance (Reinhold Publishing Co., New York, 1940).
  2. P. A. Giguere and K. B. Harvey, Can. J. Chem. 34, 798 (1956); J. G. Bayly, V. B. Kartha, and W. H. Stevens, Infrared Phys. 3, 211 (1963).
    [CrossRef]
  3. E. Ganz, Ann. Phys. 28, 445 (1937); J. J. Fox and A. E. Martin, Proc. Roy. Soc. (London) A174, 234 (1940).
    [CrossRef]
  4. H. Rubens, Verh. d.D. Phys. Ges. 17, 315 (1915).
  5. C. H. Cartwright, Nature 135, 872 (1935).
    [CrossRef]
  6. C. H. Cartwright, Nature 136, 181 (1935).
    [CrossRef]
  7. H. Rubens and E. Ladenburg, Verh. d.D. Phys. Ges. 11, 16 (1909).
  8. M. Sohm, Ann. Phys. 116, 34 (1940).
  9. E. K. Plyler and N. Acquista, J. Opt. Soc. Am. 44, 505 (1954).
    [CrossRef]
  10. E. K. Plyler and N. Griff, Appl. Opt.,  4, 1663 (1965).
    [CrossRef]
  11. A. E. Stanevich and N. G. Yaroslavskii, Opt. and Spec. 10, 278 (1961).
  12. M. Magat, thesis, University of Paris (1936).
  13. J. E. McDonald, J. Meteorol. 17, 232, (1960).
    [CrossRef]
  14. G. E. Walrafen, J. Chem. Phys. 40, 3249 (1964).
    [CrossRef]

1965 (1)

1964 (1)

G. E. Walrafen, J. Chem. Phys. 40, 3249 (1964).
[CrossRef]

1961 (1)

A. E. Stanevich and N. G. Yaroslavskii, Opt. and Spec. 10, 278 (1961).

1960 (1)

J. E. McDonald, J. Meteorol. 17, 232, (1960).
[CrossRef]

1956 (1)

P. A. Giguere and K. B. Harvey, Can. J. Chem. 34, 798 (1956); J. G. Bayly, V. B. Kartha, and W. H. Stevens, Infrared Phys. 3, 211 (1963).
[CrossRef]

1954 (1)

1940 (1)

M. Sohm, Ann. Phys. 116, 34 (1940).

1937 (1)

E. Ganz, Ann. Phys. 28, 445 (1937); J. J. Fox and A. E. Martin, Proc. Roy. Soc. (London) A174, 234 (1940).
[CrossRef]

1935 (2)

C. H. Cartwright, Nature 135, 872 (1935).
[CrossRef]

C. H. Cartwright, Nature 136, 181 (1935).
[CrossRef]

1915 (1)

H. Rubens, Verh. d.D. Phys. Ges. 17, 315 (1915).

1909 (1)

H. Rubens and E. Ladenburg, Verh. d.D. Phys. Ges. 11, 16 (1909).

Acquista, N.

Cartwright, C. H.

C. H. Cartwright, Nature 135, 872 (1935).
[CrossRef]

C. H. Cartwright, Nature 136, 181 (1935).
[CrossRef]

Dorsey, N. E.

N. E. Dorsey, Properties of the Ordinary Water Substance (Reinhold Publishing Co., New York, 1940).

Ganz, E.

E. Ganz, Ann. Phys. 28, 445 (1937); J. J. Fox and A. E. Martin, Proc. Roy. Soc. (London) A174, 234 (1940).
[CrossRef]

Giguere, P. A.

P. A. Giguere and K. B. Harvey, Can. J. Chem. 34, 798 (1956); J. G. Bayly, V. B. Kartha, and W. H. Stevens, Infrared Phys. 3, 211 (1963).
[CrossRef]

Griff, N.

Harvey, K. B.

P. A. Giguere and K. B. Harvey, Can. J. Chem. 34, 798 (1956); J. G. Bayly, V. B. Kartha, and W. H. Stevens, Infrared Phys. 3, 211 (1963).
[CrossRef]

Ladenburg, E.

H. Rubens and E. Ladenburg, Verh. d.D. Phys. Ges. 11, 16 (1909).

Magat, M.

M. Magat, thesis, University of Paris (1936).

McDonald, J. E.

J. E. McDonald, J. Meteorol. 17, 232, (1960).
[CrossRef]

Plyler, E. K.

Rubens, H.

H. Rubens, Verh. d.D. Phys. Ges. 17, 315 (1915).

H. Rubens and E. Ladenburg, Verh. d.D. Phys. Ges. 11, 16 (1909).

Sohm, M.

M. Sohm, Ann. Phys. 116, 34 (1940).

Stanevich, A. E.

A. E. Stanevich and N. G. Yaroslavskii, Opt. and Spec. 10, 278 (1961).

Walrafen, G. E.

G. E. Walrafen, J. Chem. Phys. 40, 3249 (1964).
[CrossRef]

Yaroslavskii, N. G.

A. E. Stanevich and N. G. Yaroslavskii, Opt. and Spec. 10, 278 (1961).

Ann. Phys. (2)

E. Ganz, Ann. Phys. 28, 445 (1937); J. J. Fox and A. E. Martin, Proc. Roy. Soc. (London) A174, 234 (1940).
[CrossRef]

M. Sohm, Ann. Phys. 116, 34 (1940).

Appl. Opt. (1)

Can. J. Chem. (1)

P. A. Giguere and K. B. Harvey, Can. J. Chem. 34, 798 (1956); J. G. Bayly, V. B. Kartha, and W. H. Stevens, Infrared Phys. 3, 211 (1963).
[CrossRef]

J. Chem. Phys. (1)

G. E. Walrafen, J. Chem. Phys. 40, 3249 (1964).
[CrossRef]

J. Meteorol. (1)

J. E. McDonald, J. Meteorol. 17, 232, (1960).
[CrossRef]

J. Opt. Soc. Am. (1)

Nature (2)

C. H. Cartwright, Nature 135, 872 (1935).
[CrossRef]

C. H. Cartwright, Nature 136, 181 (1935).
[CrossRef]

Opt. and Spec. (1)

A. E. Stanevich and N. G. Yaroslavskii, Opt. and Spec. 10, 278 (1961).

Verh. d.D. Phys. Ges. (2)

H. Rubens and E. Ladenburg, Verh. d.D. Phys. Ges. 11, 16 (1909).

H. Rubens, Verh. d.D. Phys. Ges. 17, 315 (1915).

Other (2)

N. E. Dorsey, Properties of the Ordinary Water Substance (Reinhold Publishing Co., New York, 1940).

M. Magat, thesis, University of Paris (1936).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Natural logarithm of measured fractional spectral transmittance TM(ν) as a function of cell thickness t in microns for ν = 100 cm−1.

Fig. 2
Fig. 2

Linear absorption coefficients α(ν) of H2O as a function of frequency in the range 170–50 cm−1. The circles and indicated uncertainties give the results of the present study; the triangles give some of the results of Stanevich and Yaroslavskii.

Fig. 3
Fig. 3

Spectral transmittance of a 10-μ thickness of water at 30°C as a function of frequency in the region from 1250 to 32 cm−1.

Fig. 4
Fig. 4

Spectrum of water in the 1100–400 cm−1 region at various temperatures.

Fig. 5
Fig. 5

The 4.7-μ “associational band” observed at various temperatures.

Fig. 6
Fig. 6

Water spectrum in the 320–80 cm−1 region at various temperatures.

Fig. 7
Fig. 7

Linear absorption coefficients α(ν) of liquid D2O as a function of frequency in the range 170–50 cm−1. The circles and indicated uncertainties represent present results; triangles give some of the data of Stanevich and Yaroslavskii.

Fig. 8
Fig. 8

Spectral transmittance of a 10-μ layer of liquid D2O at 30°C in the region 1000–32 cm−1.

Fig. 9
Fig. 9

Spectral transmittance of liquid D2O at various temperatures in the region 900–400 cm−1.

Fig. 10
Fig. 10

Spectral transmittance of D2O at various temperatures in the region 320–80 cm−1.

Fig. 11
Fig. 11

Comparison of the present results with those of Stanevich and Yaroslavskii. Panel A; Recorder tracings obtained in the present work on liquid H2O between polyethylene plates in the region from 325–125 cm−1. Panel B: Recorder trace showing water vapor lines. Panel C: Spectral transmittance of quartz (~1.5 mm) between 250 and 50 cm−1. Panel D: Spectrum of a 13-μ layer of liquid water between quartz plates as reported by Stanevich and Yaroslavskii.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ln T M ( ν ) = ln ( ρ / ρ 0 ) - α ( ν ) t