Abstract

It is generally assumed that when a plane wave enters an afocal system, the wave comes out plane from the system. For instruments, like high-precision interferometers using afocal combinations, the wavefront after the second lens has opposite curvature to that which would be produced by Fresnel diffraction, if only a stop is placed at the appropiate place near the first lens.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. V. R. K. Murty, Appl. Opt. 3, 531 (1964).
    [Crossref]
  2. R. W. Ditchburn, Light (Interscience Publishers, Inc., New York, 1961), 1st ed., p. 157.

1964 (1)

Ditchburn, R. W.

R. W. Ditchburn, Light (Interscience Publishers, Inc., New York, 1961), 1st ed., p. 157.

Murty, M. V. R. K.

Appl. Opt. (1)

Other (1)

R. W. Ditchburn, Light (Interscience Publishers, Inc., New York, 1961), 1st ed., p. 157.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Afocal lens system considered.

Fig. 2
Fig. 2

Propagation of an elementary wave through the afocal system.

Fig. 3
Fig. 3

Optical path in an afocal system.

Fig. 4
Fig. 4

Optical path in Fresnel diffraction.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E a ( k x , k y ) = F 1 { A a ( x , y ) } ,
A a ( x , y ) = F 2 { E a ( k x , k y ) } .
A b ( x , y ) = F 2 { E a [ ( f b / f a ) k x , ( f b / f a ) k y ] } .
F 2 { F 1 ( f ) } = f .
A b ( x , y ) = F 2 ( exp { [ 2 π i ( OPD ) ] / λ } × E a [ ( f b / f a ) k x , ( f b / f a ) k y ] ) .
A b ( x , y ) = F 2 { cos ( 2 π OPD / λ ) E a } + i F 2 { sin ( 2 π OPD / λ ) E a } .
tan ϕ = { F 2 [ sin ( 2 π OPD / λ ) E a ] } / { F 2 [ cos ( 2 π OPD / λ ) E a ] } .
( f b + OPD ) 2 = f b 2 + 2 f a ( f a + f b ) ( 1 - cos θ ) .
OPD = ( f a / f b ) ( f a + f b ) ( 1 - cos θ ) .
OPD = ( 1 / f a + 1 / f b ) ( r 2 / 2 ) .
OPD = - D ( 1 - cos θ ) .
D = ( f a / f b ) ( f a + f b ) ,
tan ϕ = F 2 { ( 2 π OPD / λ ) E a } / A a ( x , y ) .
2 π OPD / λ = ( 5.1436 × 10 - 3 ) ( r / r 0 ) 2 ,