Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Proc. Phys. Soc. (London) 80, 1269–1272 (1962).
    [Crossref]
  2. L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231–287 (1965).
    [Crossref]
  3. J. Strong and G. A. Vanasse, J. Opt. Soc. Am. 49, 844 (1959).
    [Crossref]
  4. Taking the absolute value of the full transform ∫F(σ)e−i2πνσdσ is useful in practice because it does not require a precise determination of the zero path difference.
  5. A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill Book Company, Inc., New York, 1962), p. 76.
  6. E. Loewenstein, Appl. Opt. 2, 491 (1963).
    [Crossref]

1965 (1)

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

1963 (1)

1962 (1)

E. Wolf, Proc. Phys. Soc. (London) 80, 1269–1272 (1962).
[Crossref]

1959 (1)

Loewenstein, E.

Mandel, L.

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

Papoulis, A.

A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill Book Company, Inc., New York, 1962), p. 76.

Strong, J.

Vanasse, G. A.

Wolf, E.

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

E. Wolf, Proc. Phys. Soc. (London) 80, 1269–1272 (1962).
[Crossref]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

Proc. Phys. Soc. (London) (1)

E. Wolf, Proc. Phys. Soc. (London) 80, 1269–1272 (1962).
[Crossref]

Rev. Mod. Phys. (1)

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231–287 (1965).
[Crossref]

Other (2)

Taking the absolute value of the full transform ∫F(σ)e−i2πνσdσ is useful in practice because it does not require a precise determination of the zero path difference.

A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill Book Company, Inc., New York, 1962), p. 76.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Plot of the instrument functions—2Δ sinc(2Δν) cos2πδν and—2δ sinc(2δν) cos2πΔν for various values of asymmetry δ.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

φ ( τ ) = P π - log γ ( t ) τ - t d t ,
F ˜ ( ν ) = - F ( σ ) e - i 2 π ν σ d σ = 2 0 F ( σ ) cos ( 2 π ν σ ) d σ ,
F ˜ - ( ν ) = - σ M 0 F ( σ ) e - i 2 π ν σ d σ
F ˜ + ( ν ) = 0 σ M F ( σ ) e - i 2 π ν σ d σ .
F ˜ - ( ν ) = - R ( σ ) H ( - σ ) F ( σ ) e - i 2 π ν σ d σ ,
R ( σ ) = 1 σ σ M = 0 σ > σ M H ( σ ) = 1 σ 0 = 0 σ < 0.
F ˜ - ( ν ) = F ˜ ( ν ) R ˜ ( ν ) H ˜ ( - ν ) = F ˜ ( ν ) 2 σ M sinc ( 2 σ M ν ) [ 1 2 δ ( ν ) + i 2 π ν ] ,
F ˜ - ( ν ) = F ˜ ( ν ) σ M sinc ( 2 σ M ν ) + i F ˜ ( ν ) σ M { sinc ( 2 σ M ν ) } ,
{ ψ ( τ ) } = P π - ψ ( ) τ - d .
( A B ) = ( A ) B = A ( B ) ,
F ˜ - ( ν ) = F ˜ ( ν ) + { F ˜ ( ν ) } σ M sinc ( 2 σ M ν ) .
F ˜ + ( ν ) = F ˜ ( ν ) σ M sinc ( 2 σ M ν ) - i F ˜ ( ν ) σ M { sinc ( 2 σ M ν ) } .
F ˜ + ( ν ) = σ M sinc ( 2 σ M ν ) - i σ M { cos ( 2 π σ M ν ) - 1 } / 2 π σ M ν
F ˜ + ( ν ) = σ M sin ( σ M ν ) .
F ˜ - ( ν ) + F ˜ + ( ν ) = F ˜ ( ν ) 2 σ M sinc ( 2 σ M ν ) .
F ˜ c ( ν ) = - ( Δ - δ ) Δ + δ F ( σ ) e - i 2 π σ d σ = F ˜ ( ν ) [ 2 ( Δ + δ ) sinc { 2 ν ( Δ + δ ) } ] [ 1 2 δ ( ν ) - i 2 π ν ] + F ˜ ( ν ) [ 2 ( Δ - δ ) sinc { 2 ν ( Δ - δ ) } ] [ 1 2 δ ( ν ) + i 2 π ν ] = F ˜ ( ν ) [ 2 Δ sinc ( 2 ν Δ ) cos ( 2 π ν δ ) ] - i { F ˜ ( ν ) } [ 2 δ sinc ( 2 ν δ ) cos ( 2 π ν Δ ) ] .
F ˜ c ( ν ) = F ˜ ( ν ) { 2 Δ sinc ( 2 ν Δ ) cos ( 2 π ν δ ) } - i F ˜ ( ν ) { 2 δ sinc ( 2 ν Δ ) cos ( 2 π ν Δ ) } .
F ˜ c ( ν ) = F ˜ ( ν ) { 2 Δ sinc ( 2 ν Δ ) cos ( 2 π ν δ ) } - i F ˜ ( ν ) { 2 Δ sinc ( 2 ν Δ ) sin ( 2 π ν Δ ) }
F ˜ c ( ν ) = F ˜ ( ν ) 2 Δ sinc ( 2 ν Δ ) e - i 2 π ν δ ,