Abstract

PDF Article

References

  • View by:
  • |
  • |

  1. E. Wolf, Proc. Phys. Soc. (London) 80, 1269–1272 (1962).
  2. L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231–287 (1965).
  3. J. Strong and G. A. Vanasse, J. Opt. Soc. Am. 49, 844 (1959).
  4. Taking the absolute value of the full transform ࢴF(σ)e-12πνσdσ is useful in practice because it does not require a precise determination of the zero path difference.
  5. A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill Book Company, Inc., New York, 1962), p. 76.
  6. E. Loewenstein, Appl. Opt. 2, 491 (1963).

Loewenstein, E.

E. Loewenstein, Appl. Opt. 2, 491 (1963).

Mandel, L.

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231–287 (1965).

Papoulis, A.

A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill Book Company, Inc., New York, 1962), p. 76.

Strong, J.

J. Strong and G. A. Vanasse, J. Opt. Soc. Am. 49, 844 (1959).

Vanasse, G. A.

J. Strong and G. A. Vanasse, J. Opt. Soc. Am. 49, 844 (1959).

Wolf, E.

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231–287 (1965).

E. Wolf, Proc. Phys. Soc. (London) 80, 1269–1272 (1962).

Other (6)

E. Wolf, Proc. Phys. Soc. (London) 80, 1269–1272 (1962).

L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231–287 (1965).

J. Strong and G. A. Vanasse, J. Opt. Soc. Am. 49, 844 (1959).

Taking the absolute value of the full transform ࢴF(σ)e-12πνσdσ is useful in practice because it does not require a precise determination of the zero path difference.

A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill Book Company, Inc., New York, 1962), p. 76.

E. Loewenstein, Appl. Opt. 2, 491 (1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.