Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Fitch, T. E. Slykhouse, and H. G. Drickamer, J. Opt. Soc. Am. 47, 1015 (1957).
    [CrossRef]
  2. P. B. Alers and P. E. V. Shannon, J. Chem. Phys. 41, 1675 (1964).
    [CrossRef]
  3. H. Offen, Ph.D. thesis (University of California, Los Angeles, 1963).
  4. Optivac, Inc., North Brookfield, Massachusetts.
  5. W. H. Melhuish and R. Hardwick, Trans. Faraday Soc. 58, 1908 (1962).
    [CrossRef]
  6. PEK X-15, PEK Labs, Palo Alto, California.
  7. PEK 110, PEK Labs, Palo Alto, California.
  8. E. G. McRae, J. Phys. Chem. 61, 562 (1957).The interaction of the solvent permanent dipoles with the induced solute dipole also should be considered for lucite solutions; however, this effect probably is of the order of a 5% correction to the dispersion interaction in the present case.
    [CrossRef]
  9. P. W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 72 (1948).
  10. S. Sambursky and G. Wolfson, Phys. Rev. 62, 357 (1942).
    [CrossRef]
  11. S. R. Veljkovic, Trans. Faraday Soc. 53, 1181 (1957).
    [CrossRef]

1964 (1)

P. B. Alers and P. E. V. Shannon, J. Chem. Phys. 41, 1675 (1964).
[CrossRef]

1962 (1)

W. H. Melhuish and R. Hardwick, Trans. Faraday Soc. 58, 1908 (1962).
[CrossRef]

1957 (3)

E. G. McRae, J. Phys. Chem. 61, 562 (1957).The interaction of the solvent permanent dipoles with the induced solute dipole also should be considered for lucite solutions; however, this effect probably is of the order of a 5% correction to the dispersion interaction in the present case.
[CrossRef]

S. R. Veljkovic, Trans. Faraday Soc. 53, 1181 (1957).
[CrossRef]

R. A. Fitch, T. E. Slykhouse, and H. G. Drickamer, J. Opt. Soc. Am. 47, 1015 (1957).
[CrossRef]

1948 (1)

P. W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 72 (1948).

1942 (1)

S. Sambursky and G. Wolfson, Phys. Rev. 62, 357 (1942).
[CrossRef]

Alers, P. B.

P. B. Alers and P. E. V. Shannon, J. Chem. Phys. 41, 1675 (1964).
[CrossRef]

Bridgman, P. W.

P. W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 72 (1948).

Drickamer, H. G.

Fitch, R. A.

Hardwick, R.

W. H. Melhuish and R. Hardwick, Trans. Faraday Soc. 58, 1908 (1962).
[CrossRef]

McRae, E. G.

E. G. McRae, J. Phys. Chem. 61, 562 (1957).The interaction of the solvent permanent dipoles with the induced solute dipole also should be considered for lucite solutions; however, this effect probably is of the order of a 5% correction to the dispersion interaction in the present case.
[CrossRef]

Melhuish, W. H.

W. H. Melhuish and R. Hardwick, Trans. Faraday Soc. 58, 1908 (1962).
[CrossRef]

Offen, H.

H. Offen, Ph.D. thesis (University of California, Los Angeles, 1963).

Sambursky, S.

S. Sambursky and G. Wolfson, Phys. Rev. 62, 357 (1942).
[CrossRef]

Shannon, P. E. V.

P. B. Alers and P. E. V. Shannon, J. Chem. Phys. 41, 1675 (1964).
[CrossRef]

Slykhouse, T. E.

Veljkovic, S. R.

S. R. Veljkovic, Trans. Faraday Soc. 53, 1181 (1957).
[CrossRef]

Wolfson, G.

S. Sambursky and G. Wolfson, Phys. Rev. 62, 357 (1942).
[CrossRef]

J. Chem. Phys. (1)

P. B. Alers and P. E. V. Shannon, J. Chem. Phys. 41, 1675 (1964).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

E. G. McRae, J. Phys. Chem. 61, 562 (1957).The interaction of the solvent permanent dipoles with the induced solute dipole also should be considered for lucite solutions; however, this effect probably is of the order of a 5% correction to the dispersion interaction in the present case.
[CrossRef]

Phys. Rev. (1)

S. Sambursky and G. Wolfson, Phys. Rev. 62, 357 (1942).
[CrossRef]

Proc. Am. Acad. Arts Sci. (1)

P. W. Bridgman, Proc. Am. Acad. Arts Sci. 76, 72 (1948).

Trans. Faraday Soc. (2)

S. R. Veljkovic, Trans. Faraday Soc. 53, 1181 (1957).
[CrossRef]

W. H. Melhuish and R. Hardwick, Trans. Faraday Soc. 58, 1908 (1962).
[CrossRef]

Other (4)

PEK X-15, PEK Labs, Palo Alto, California.

PEK 110, PEK Labs, Palo Alto, California.

H. Offen, Ph.D. thesis (University of California, Los Angeles, 1963).

Optivac, Inc., North Brookfield, Massachusetts.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

F. 1
F. 1

Fluorescence spectra of Lucite solutions of anthracene: ——, transmission fluorescence at 4.1 kbar; ……, front surface fluorescence at 21.4 kbar.

F. 2
F. 2

νi(P)exp − νi(0)calc for the 0–1 bands of the absorption (closed points) and fluorescence (open points) spectra. The solid lines indicate the shifts calculated from least-squares fits of the experimental data.

F. 3
F. 3

[νi(P) − νi(0)]calc for the 0–1 absorption band as a function of the density of lucite to 40 kbar. The slope of the solid line is −1250 cm−1.

Tables (1)

Tables Icon

Table I Least-squares fit of pressure dependence of anthracene spectra to νi(P) = νi(0) − aiP + biP2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ E ( α e α g ) a ( α ) m ( r am 6 ) av .