Abstract

An f/3.5, 24-in. aerial-lens design has been evaluated heterochromatically to test the relative merits of geometric versus wave-optical transfer calculations. Both methods yielded substantially the same results for the lens under test. The geometric calculation required about 612 min of high-speed computer time while more than 3 h of equivalent computer time was required to make the diffraction calculations.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Scott, Soc. Phot. Instr. Engr. J. 2, 132 (1964).
  2. M. D. Rosenau, Photogrammetric Engr. 4, 607 (1964).
  3. K. Miyamoto, in Progress in Optics I, E. Woly, ed. (North-Holland Publishing Co., Amsterdam, Netherlands, 1961), p. 41.
  4. H. H. Hopkins, Proc. Roy. Soc. (London) A231, 91 (1955).
  5. E. Marchand and R. Phillips, Appl. Opt.,  2, 359 (1963).
    [CrossRef]

1964 (2)

R. M. Scott, Soc. Phot. Instr. Engr. J. 2, 132 (1964).

M. D. Rosenau, Photogrammetric Engr. 4, 607 (1964).

1963 (1)

1955 (1)

H. H. Hopkins, Proc. Roy. Soc. (London) A231, 91 (1955).

Hopkins, H. H.

H. H. Hopkins, Proc. Roy. Soc. (London) A231, 91 (1955).

Marchand, E.

Miyamoto, K.

K. Miyamoto, in Progress in Optics I, E. Woly, ed. (North-Holland Publishing Co., Amsterdam, Netherlands, 1961), p. 41.

Phillips, R.

Rosenau, M. D.

M. D. Rosenau, Photogrammetric Engr. 4, 607 (1964).

Scott, R. M.

R. M. Scott, Soc. Phot. Instr. Engr. J. 2, 132 (1964).

Appl. Opt. (1)

Photogrammetric Engr. (1)

M. D. Rosenau, Photogrammetric Engr. 4, 607 (1964).

Proc. Roy. Soc. (London) (1)

H. H. Hopkins, Proc. Roy. Soc. (London) A231, 91 (1955).

Soc. Phot. Instr. Engr. J. (1)

R. M. Scott, Soc. Phot. Instr. Engr. J. 2, 132 (1964).

Other (1)

K. Miyamoto, in Progress in Optics I, E. Woly, ed. (North-Holland Publishing Co., Amsterdam, Netherlands, 1961), p. 41.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

F. 1
F. 1

Axial case. Rd(s,t)– – – – –, Rw(0,t)————, R ¯ g ( R , 0 ), — — —, R ¯ g + d ( R , 0 ) — — —.

F. 2
F. 2

7° half-field angle. Rd(s,t) – – – – –, Rw(s,0)– – – – –, Rw(0,t)———, R ¯ g ( R , 0 ) – – –, R ¯ g + d ( R , 0 ) – – – –.

Tables (1)

Tables Icon

Table I High-contrast 3-bar-target resolution predictions.a

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I w ( x , y ) = C + P ( λ ) I w ( x , y , λ ) d λ ,
I w ( x , y ) C n = 0 n = N P ( λ n ) I w ( x , y , λ n ) Δ λ n , Δ λ n = λ n + 1 λ n .
R w ( s , t ) C n = 0 n = N P ( λ n ) Δ λ n + + I w ( x , y , λ n ) × exp [ 2 π i ( s x + t y ) ] d x d y ,
R w ( s , t ) C n = 0 n = N P ( λ n ) Δ λ n × s exp [ 2 π i f n ( x + s / 2 , y + t / 2 ) 2 π i f n ( x s / 2 , y t / 2 ) ] d x d y ,
f n = 2 π ϕ n / λ n = f 1 , n y + f 2 , n u + f 3 , n ( y ) 2 + f 4 , n y u + f 5 , n u 2 + f 6 , n ( y ) 3 + f 7 , n ( y ) 2 u + f 8 , n y u 2 + f 9 , n u 3 ,
R w ( s , t ) C n = 0 n = N P ( λ n ) Δ λ n exp [ 2 π i t ( Y n Y p ) ] × s exp [ 2 π i f n ( x + s / 2 , y n + t / 2 ) 2 π i f n ( x s / 2 , y n t / 2 ) ] d x d y n ,
I g ( x , y ) C n = 0 n = N P ( λ n ) I g ( x , y , λ n ) Δ λ n ,
R g ( s , t ) = const + + I g ( x , y ) × exp [ 2 π i ( s x + t y ) ] d x d y .
E ( r ) = C 0 2 π 0 τ I g ( r cos θ , r sin θ ) r d r d θ 0 2 π 0 I g ( r cos θ , r sin θ ) r d r d θ ,
d E ( r ) / d r = ( C / V ) 2 π r Ī g ( r ) ,
Ī g ( r ) = ( V / C 2 π r ) [ d E ( r ) / d r ] ,
R ¯ g ( R , 0 ) = const 0 2 π 0 I g ( r ) × exp [ 2 π i r R cos ( θ ϕ ) ] r d r d θ ,
R ¯ g ( r , 0 ) = const 0 2 π 0 d E ( r ) d r × exp [ 2 π i r R cos ( θ ϕ ) ] d r d θ ,
4 1 2 °
5 1 2 °