Abstract

The contrast threshold for perception of square-wave gratings as depending on spatial frequency is measured for varying viewing distances, adaptation and exposure time. The luminance varied between 1.4 and 110 cd/m2; target distances were 1, 3.1, and 7 m. Exposure times ranged from 1.5 msec to 1 sec and unlimited. A distinct minimum threshold contrast is observed for a definite spatial frequency, which depends on the viewing distance and luminance. A decrease in exposure time causes a less significant minimum. Exposure times from 40 to 1.5 msec do not alter the curve decisively. With exposure times less than 2 msec and spatial frequencies somewhat above 0.02 lines/min of arc the optical transfer function of the eye can be measured by determination of thresholds.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Flamant, Rev. Opt. 34, 433 (1955).
  2. G. Westheimer and F. W. Campbell, J. Opt. Soc. Am. 52, 1040 (1962).
    [Crossref] [PubMed]
  3. J. Krauskopf, J. Opt. Soc. Am. 52, 1946 (1962).
    [Crossref]
  4. R. Roehler, Vision Res. 2, 391 (1962).
    [Crossref]
  5. E. M. Lowry and J. J. De Palma, J. Opt. Soc. Am. 51, 740 (1961).
    [Crossref] [PubMed]
  6. O. Bryngdahl, Kybernetik 2, 71 (1964).
    [Crossref] [PubMed]
  7. K. J. Rosenbruch, Optik 16, 135 (1959).
  8. E. Menzel, Naturwiss. 46, 316 (1959).
    [Crossref]
  9. S. Ooue, J. Appl. Phys. (Japan) 28, 531 (1959).
  10. J. J. De Palma and E. M. Lowry, J. Opt. Soc. Am. 52, 328 (1962).
    [Crossref]
  11. O. Bryngdahl, J. Opt. Soc. Am. 54, 1152 (1964).
    [Crossref]
  12. S. Novak and G. Sperling, Opt. Acta 10, 187 (1963).
    [Crossref]
  13. A. V. Tschermak-Seysenegg, Einführung in die physiologische Optik (München1942), Vol. I, p. 10.
  14. A. Fiorentini, in Progress in Optics I, E. Wolf, ed. (Interscience Publ., John Wiley & Sons, Inc., New York, 1961), p. 286.

1964 (2)

1963 (1)

S. Novak and G. Sperling, Opt. Acta 10, 187 (1963).
[Crossref]

1962 (4)

1961 (1)

1959 (3)

K. J. Rosenbruch, Optik 16, 135 (1959).

E. Menzel, Naturwiss. 46, 316 (1959).
[Crossref]

S. Ooue, J. Appl. Phys. (Japan) 28, 531 (1959).

1955 (1)

F. Flamant, Rev. Opt. 34, 433 (1955).

Bryngdahl, O.

Campbell, F. W.

De Palma, J. J.

Fiorentini, A.

A. Fiorentini, in Progress in Optics I, E. Wolf, ed. (Interscience Publ., John Wiley & Sons, Inc., New York, 1961), p. 286.

Flamant, F.

F. Flamant, Rev. Opt. 34, 433 (1955).

Krauskopf, J.

J. Krauskopf, J. Opt. Soc. Am. 52, 1946 (1962).
[Crossref]

Lowry, E. M.

Menzel, E.

E. Menzel, Naturwiss. 46, 316 (1959).
[Crossref]

Novak, S.

S. Novak and G. Sperling, Opt. Acta 10, 187 (1963).
[Crossref]

Ooue, S.

S. Ooue, J. Appl. Phys. (Japan) 28, 531 (1959).

Roehler, R.

R. Roehler, Vision Res. 2, 391 (1962).
[Crossref]

Rosenbruch, K. J.

K. J. Rosenbruch, Optik 16, 135 (1959).

Sperling, G.

S. Novak and G. Sperling, Opt. Acta 10, 187 (1963).
[Crossref]

Tschermak-Seysenegg, A. V.

A. V. Tschermak-Seysenegg, Einführung in die physiologische Optik (München1942), Vol. I, p. 10.

Westheimer, G.

J. Appl. Phys. (Japan) (1)

S. Ooue, J. Appl. Phys. (Japan) 28, 531 (1959).

J. Opt. Soc. Am. (5)

Kybernetik (1)

O. Bryngdahl, Kybernetik 2, 71 (1964).
[Crossref] [PubMed]

Naturwiss. (1)

E. Menzel, Naturwiss. 46, 316 (1959).
[Crossref]

Opt. Acta (1)

S. Novak and G. Sperling, Opt. Acta 10, 187 (1963).
[Crossref]

Optik (1)

K. J. Rosenbruch, Optik 16, 135 (1959).

Rev. Opt. (1)

F. Flamant, Rev. Opt. 34, 433 (1955).

Vision Res. (1)

R. Roehler, Vision Res. 2, 391 (1962).
[Crossref]

Other (2)

A. V. Tschermak-Seysenegg, Einführung in die physiologische Optik (München1942), Vol. I, p. 10.

A. Fiorentini, in Progress in Optics I, E. Wolf, ed. (Interscience Publ., John Wiley & Sons, Inc., New York, 1961), p. 286.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

F. 1
F. 1

Schematic diagram of the experimental arrangement.

F. 2
F. 2

Luminance-difference threshold for squarewave test objects as function of the spatial frequency of the test objects: solid line 7-m viewing distance, 2° visual angle; dotted line, 3.1 m, 4°; dashed line 1 m, 12°.

F. 3
F. 3

Square-wave contrast sensitivity as function of spatial frequency for three different luminances and viewing distances of 1 and 7 m: solid line 110 cd/m2; dotted line 9.2 cd/m2; dashed line 1.4 cd/m2.

F. 4
F. 4

Luminance-difference threshold for square-wave test objects as function of luminance.

F. 5
F. 5

Luminance-difference threshold for square-wave test objects as function of the viewing distance and visual angle. Luminance 110 cd/m2: dashed line 0.3 lines/min of arc; dotted line 0.1 lines/min of arc; solid line 0.02 lines/min of arc.

F. 6
F. 6

Luminance-difference threshold for squarewave test objects as function of the viewing distance and visual angle. Luminance 1.4 cd/m2: dashed line 0.4 lines/min of arc; dotted line 0.1 lines/min of arc; solid line 0.02 lines/min of arc.

F. 7
F. 7

Square-wave contrast sensitivity for different exposure times as function of spatial frequency (luminance 110 cd/m2, viewing distance 1 m, visual angle 12°, observer Koe).

F. 8
F. 8

Square-wave contrast sensitivity for different exposure times as function of spatial frequency (luminance 110 cd/m2, viewing distance 1 m, visual angle 12°, observer Me).

F. 9
F. 9

Square-wave contrast sensitivity for different exposure times as function of spatial frequency (luminance 110 cd/m2, viewing distance 7 m, visual angle 2°).

F. 10
F. 10

Modulation transfer function of the optical part of the eye for 7-m viewing distance compared with the results of Roehler and for 1-m viewing distance. Solid line Roehler’s results, dotted line 7-m viewing distance, dashed line 1-m viewing distance.

F. 11
F. 11

Psychophysical modulation transfer functions for different exposure times. T0(υ) optical modulation transfer function of the eye. T1(υ) is assumed to be time independent. Luminance L0=110 cd/m2, viewing distance 1 m, observer Me.

F. 12
F. 12

Psychophysical modulation transfer function for different exposure times. T0(υ) optical modulation transfer function of the eye. T1(υ) is assumed to be time independent. Luminance L0=110 cd/m2, viewing distance 1 m, observer Koe.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T ( υ ) = T 0 ( υ ) · T 1 ( υ ) · T 2 ( υ ) ,