Abstract

The relative effectiveness of the major absorption bands in producing fluorescence of the neodymium ion in glass was investigated. The chief result was that the conversion efficiency, the number of fluorescence photons per absorbed photon, was nearly independent of the absorption band pumped. For 5% Nd in barium crown glass, the conversion efficiency was 0.43 for the total fluorescence, and 0.26 for the 1.06-μ fluorescence.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Botden and F. A. Kröger, Physica 15, 747 (1949) [CaWO4:Sm].
    [Crossref]
  2. P. J. Botden, Philips Res. Rept.6, 425 (1951) [CaWO4:Sm].
  3. H. F. Geisler and K. H. Hellwege, Z. Physik 136, 293 (1953) [Tb(BrO3)3·9H2O].
    [Crossref]
  4. W. Kaiser, C. G. B. Garrett, and D. L. Wood, Phys. Rev. 123, 766 (1961) [CaF2:Sm].
    [Crossref]
  5. Z. J. Kiss, Phys. Rev. 127, 718 (1962) [CaF2:Tm].
    [Crossref]
  6. L. G. DeShazer, dissertation, The Johns Hopkins University, 1963 [LaCI3:Gd, Pr, Eu].
  7. J. D. Kingsley and J. S. Prener, Phys. Rev. 126, 458 (1962) [CdF2:Eu].
    [Crossref]
  8. J. D. Axe and P. P. Sorokin, Phys. Rev. 130, 945 (1963) [SrCl2 and SrF2:Sm].
    [Crossref]
  9. N. C. Chang, J. Appl. Phys. 34, 3500 (1963);J. Opt. Soc. Am. 53, 1315 (1963) [Y2O3:Eu].
    [Crossref]
  10. S. A. Pollack, J. Chem. Phys. 40, 2751 (1964) [CaF2:Er].
    [Crossref]
  11. L. F. Johnson, in Quantum Electronics III, (Columbia University Press, New York, 1964), Vol. 2, p. 1021 [CaWO4:Nd].
  12. H. W. Gandy and R. J. Ginther, in Quantum Electronics III, (Columbia University Press, New York, 1964), Vol. 2, p. 1045 [glass: Gd].
  13. R. D. Maurer, Symposium on Optical Masers, J. Fox, ed. (Polytechnic Institute of Brooklyn, New York, 1963), p. 435 [glass: Nd].
  14. G. H. Dieke and L. A. Hall, J. Chem. Phys. 27, 465 (1957).
    [Crossref]
  15. N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
    [Crossref]

1964 (1)

S. A. Pollack, J. Chem. Phys. 40, 2751 (1964) [CaF2:Er].
[Crossref]

1963 (3)

J. D. Axe and P. P. Sorokin, Phys. Rev. 130, 945 (1963) [SrCl2 and SrF2:Sm].
[Crossref]

N. C. Chang, J. Appl. Phys. 34, 3500 (1963);J. Opt. Soc. Am. 53, 1315 (1963) [Y2O3:Eu].
[Crossref]

N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
[Crossref]

1962 (2)

Z. J. Kiss, Phys. Rev. 127, 718 (1962) [CaF2:Tm].
[Crossref]

J. D. Kingsley and J. S. Prener, Phys. Rev. 126, 458 (1962) [CdF2:Eu].
[Crossref]

1961 (1)

W. Kaiser, C. G. B. Garrett, and D. L. Wood, Phys. Rev. 123, 766 (1961) [CaF2:Sm].
[Crossref]

1957 (1)

G. H. Dieke and L. A. Hall, J. Chem. Phys. 27, 465 (1957).
[Crossref]

1953 (1)

H. F. Geisler and K. H. Hellwege, Z. Physik 136, 293 (1953) [Tb(BrO3)3·9H2O].
[Crossref]

1949 (1)

P. J. Botden and F. A. Kröger, Physica 15, 747 (1949) [CaWO4:Sm].
[Crossref]

Axe, J. D.

J. D. Axe and P. P. Sorokin, Phys. Rev. 130, 945 (1963) [SrCl2 and SrF2:Sm].
[Crossref]

Botden, P. J.

P. J. Botden and F. A. Kröger, Physica 15, 747 (1949) [CaWO4:Sm].
[Crossref]

P. J. Botden, Philips Res. Rept.6, 425 (1951) [CaWO4:Sm].

Chang, N. C.

N. C. Chang, J. Appl. Phys. 34, 3500 (1963);J. Opt. Soc. Am. 53, 1315 (1963) [Y2O3:Eu].
[Crossref]

DeShazer, L. G.

L. G. DeShazer, dissertation, The Johns Hopkins University, 1963 [LaCI3:Gd, Pr, Eu].

Dieke, G. H.

G. H. Dieke and L. A. Hall, J. Chem. Phys. 27, 465 (1957).
[Crossref]

Gandy, H. W.

H. W. Gandy and R. J. Ginther, in Quantum Electronics III, (Columbia University Press, New York, 1964), Vol. 2, p. 1045 [glass: Gd].

Garrett, C. G. B.

W. Kaiser, C. G. B. Garrett, and D. L. Wood, Phys. Rev. 123, 766 (1961) [CaF2:Sm].
[Crossref]

Geisler, H. F.

H. F. Geisler and K. H. Hellwege, Z. Physik 136, 293 (1953) [Tb(BrO3)3·9H2O].
[Crossref]

Ginther, R. J.

H. W. Gandy and R. J. Ginther, in Quantum Electronics III, (Columbia University Press, New York, 1964), Vol. 2, p. 1045 [glass: Gd].

Hall, L. A.

G. H. Dieke and L. A. Hall, J. Chem. Phys. 27, 465 (1957).
[Crossref]

Hellwege, K. H.

H. F. Geisler and K. H. Hellwege, Z. Physik 136, 293 (1953) [Tb(BrO3)3·9H2O].
[Crossref]

Johnson, L. F.

L. F. Johnson, in Quantum Electronics III, (Columbia University Press, New York, 1964), Vol. 2, p. 1021 [CaWO4:Nd].

Kaiser, W.

W. Kaiser, C. G. B. Garrett, and D. L. Wood, Phys. Rev. 123, 766 (1961) [CaF2:Sm].
[Crossref]

Kingsley, J. D.

J. D. Kingsley and J. S. Prener, Phys. Rev. 126, 458 (1962) [CdF2:Eu].
[Crossref]

Kiss, Z. J.

Z. J. Kiss, Phys. Rev. 127, 718 (1962) [CaF2:Tm].
[Crossref]

Kröger, F. A.

P. J. Botden and F. A. Kröger, Physica 15, 747 (1949) [CaWO4:Sm].
[Crossref]

Maurer, R. D.

R. D. Maurer, Symposium on Optical Masers, J. Fox, ed. (Polytechnic Institute of Brooklyn, New York, 1963), p. 435 [glass: Nd].

Melamed, N. T.

N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
[Crossref]

Pollack, S. A.

S. A. Pollack, J. Chem. Phys. 40, 2751 (1964) [CaF2:Er].
[Crossref]

Prener, J. S.

J. D. Kingsley and J. S. Prener, Phys. Rev. 126, 458 (1962) [CdF2:Eu].
[Crossref]

Sorokin, P. P.

J. D. Axe and P. P. Sorokin, Phys. Rev. 130, 945 (1963) [SrCl2 and SrF2:Sm].
[Crossref]

Wood, D. L.

W. Kaiser, C. G. B. Garrett, and D. L. Wood, Phys. Rev. 123, 766 (1961) [CaF2:Sm].
[Crossref]

J. Appl. Phys. (2)

N. C. Chang, J. Appl. Phys. 34, 3500 (1963);J. Opt. Soc. Am. 53, 1315 (1963) [Y2O3:Eu].
[Crossref]

N. T. Melamed, J. Appl. Phys. 34, 560 (1963).
[Crossref]

J. Chem. Phys. (2)

G. H. Dieke and L. A. Hall, J. Chem. Phys. 27, 465 (1957).
[Crossref]

S. A. Pollack, J. Chem. Phys. 40, 2751 (1964) [CaF2:Er].
[Crossref]

Phys. Rev. (4)

W. Kaiser, C. G. B. Garrett, and D. L. Wood, Phys. Rev. 123, 766 (1961) [CaF2:Sm].
[Crossref]

Z. J. Kiss, Phys. Rev. 127, 718 (1962) [CaF2:Tm].
[Crossref]

J. D. Kingsley and J. S. Prener, Phys. Rev. 126, 458 (1962) [CdF2:Eu].
[Crossref]

J. D. Axe and P. P. Sorokin, Phys. Rev. 130, 945 (1963) [SrCl2 and SrF2:Sm].
[Crossref]

Physica (1)

P. J. Botden and F. A. Kröger, Physica 15, 747 (1949) [CaWO4:Sm].
[Crossref]

Z. Physik (1)

H. F. Geisler and K. H. Hellwege, Z. Physik 136, 293 (1953) [Tb(BrO3)3·9H2O].
[Crossref]

Other (5)

P. J. Botden, Philips Res. Rept.6, 425 (1951) [CaWO4:Sm].

L. G. DeShazer, dissertation, The Johns Hopkins University, 1963 [LaCI3:Gd, Pr, Eu].

L. F. Johnson, in Quantum Electronics III, (Columbia University Press, New York, 1964), Vol. 2, p. 1021 [CaWO4:Nd].

H. W. Gandy and R. J. Ginther, in Quantum Electronics III, (Columbia University Press, New York, 1964), Vol. 2, p. 1045 [glass: Gd].

R. D. Maurer, Symposium on Optical Masers, J. Fox, ed. (Polytechnic Institute of Brooklyn, New York, 1963), p. 435 [glass: Nd].

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

F. 1
F. 1

Optical arrangement for measurement of fluorescence conversion efficiencies. The components are: (1) tungsten-ribbon lamp, (2) high-pressure mercury lamp, (3) quartz lens, (4) Farrand grating monochromator, (5) filters, (6) spherical mirror with center aperture, (7) MgO sample holder, (8) 90 cps chopper, (9) detector.

F. 2
F. 2

Cutaway view of sample holder. The components are: (1) glass sample, (2) cylindrical hole, (3) black tape, (4) block of pressed magnesium oxide powder, (5) support rod.

F. 3
F. 3

Absorption spectrum of 5% Nd glass (AO 3669A) at room temperature. Path length is 0.5 cm. The dashed curve shows the absorption of the undoped glass.

F. 4
F. 4

Fluorescence conversion efficiency of 5% Nd glass (AO 3669A). The wavelengths of the peaks of the major Nd pump bands are shown.

F. 5
F. 5

Incident photon conversion efficiency for 5% Nd glass (AO 3669A). The solid curve shows the efficiency of the 0.5-cm glass sample, and the dashed curve shows the efficiency of the 0.9-cm glass sample.

F. 6
F. 6

Energy efficiency for 5% Nd glass (AO 3669A).

Tables (2)

Tables Icon

Table I Absorption coefficients of 5% Nd in barium crown glass at room temperature.

Tables Icon

Table II Fluorescence intensities of 5% Nd in barium crown glass at room temperature.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I i = I 0 [ 1 + ( Δ I / I 0 ) ] .
η * = η ( 1 e α x ) , when δ λ Δ λ .
η * = η ( 1 e α x ) ( δ λ / Δ λ ) , when δ λ Δ λ .
τ 1 = τ 0 1 + τ L 1 .
η = τ 0 1 / τ 1 = τ / τ 0 .