Abstract

On and off responses to a conditioning stimulus fluctuating between a primary adapting level of 2.7 ft-L and a secondary level of 0.3 ft-L are investigated using the increment-threshold technique. Single negative conditioning flashes (momentary diminution from 2.7 to 0.3 ft-L) are shown to yield discrete off and then on responses, even for flashes as short as 3 msec. Positive conditioning flashes, presented after a 17-msec diminution of the primary adapting level and followed by 57 msec at the secondary level, are also capable of generating discrete on and off responses, but only if longer than about 40 msec. Very short positive flashes produce little or no effect and are treated by the visual system as if they were part of a continuous dark interval. Flicker is investigated by presenting series of N negative conditioning flashes, with N varying from 2 to 5; increment thresholds obtained under these conditions are compared with those for a stimulus continuously fluctuating between the two levels at 29 cps. The results indicate that the visual system treats the flicker train to a considerable extent as it would a single negative flash, with a ripple superposed that is associated with all individual flashes in the train except the first positive flash, which is always ignored. It is tentatively suggested—pending further experimentation—that the responses to the individual flashes in a flicker train are neither on nor off responses; rather they may be responses to the integrated energy contained within each flash.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).
  2. H. D. Baker, J. Opt. Soc. Am. 43, 798 (1953); J. Opt. Soc. Am. 53, 98 (1963).
    [CrossRef] [PubMed]
  3. R. M. Boynton, W. R. Bush, and J. M. Enoch, J. Opt. Soc. Am. 44, 55 (1954); R. M. Boynton and G. Kandel, ibid.47, 275 (1957); R. M. Boynton and J. W. Onley, ibid.52, 934 (1962).
  4. W. S. Battersby and I. Wagman, J. Opt. Soc. Am. 49, 752 (1959).
    [CrossRef] [PubMed]
  5. R. M. Boynton and J. Siegfried, J. Opt. Soc. Am. 52, 720 (1962).
    [CrossRef]
  6. R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
    [CrossRef]
  7. H. Piéron, La vision en lumiére intermittente (Centre National de la Recherche Scientifique, 15, Quai Anatole-France, Paris 7e, 1961).

1962 (1)

1961 (1)

1959 (1)

1954 (1)

R. M. Boynton, W. R. Bush, and J. M. Enoch, J. Opt. Soc. Am. 44, 55 (1954); R. M. Boynton and G. Kandel, ibid.47, 275 (1957); R. M. Boynton and J. W. Onley, ibid.52, 934 (1962).

1953 (1)

1947 (1)

B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).

Baker, H. D.

Battersby, W. S.

Boynton, R. M.

R. M. Boynton and J. Siegfried, J. Opt. Soc. Am. 52, 720 (1962).
[CrossRef]

R. M. Boynton, J. F. Sturr, and M. Ikeda, J. Opt. Soc. Am. 51, 196 (1961).
[CrossRef]

R. M. Boynton, W. R. Bush, and J. M. Enoch, J. Opt. Soc. Am. 44, 55 (1954); R. M. Boynton and G. Kandel, ibid.47, 275 (1957); R. M. Boynton and J. W. Onley, ibid.52, 934 (1962).

Bush, W. R.

R. M. Boynton, W. R. Bush, and J. M. Enoch, J. Opt. Soc. Am. 44, 55 (1954); R. M. Boynton and G. Kandel, ibid.47, 275 (1957); R. M. Boynton and J. W. Onley, ibid.52, 934 (1962).

Crawford, B. H.

B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).

Enoch, J. M.

R. M. Boynton, W. R. Bush, and J. M. Enoch, J. Opt. Soc. Am. 44, 55 (1954); R. M. Boynton and G. Kandel, ibid.47, 275 (1957); R. M. Boynton and J. W. Onley, ibid.52, 934 (1962).

Ikeda, M.

Piéron, H.

H. Piéron, La vision en lumiére intermittente (Centre National de la Recherche Scientifique, 15, Quai Anatole-France, Paris 7e, 1961).

Siegfried, J.

Sturr, J. F.

Wagman, I.

J. Opt. Soc. Am. (5)

Proc. Roy. Soc. (London) (1)

B. H. Crawford, Proc. Roy. Soc. (London) B134, 283 (1947).

Other (1)

H. Piéron, La vision en lumiére intermittente (Centre National de la Recherche Scientifique, 15, Quai Anatole-France, Paris 7e, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration to show why negative conditioning flash (b) would be expected to produce a clearer separation of on and off responses than positive conditioning flash (a).

Fig. 2
Fig. 2

The conditions of stimulus luminance and timing for the three experiments: Experiment 1 (−τ); Experiment 2 (−17, +T, −57), and Experiment 3 (N).

Fig. 3
Fig. 3

Results of Experiment 1 for (a) subject MI and (b) subject FT. Increment threshold values, scaled so that 0.0 corresponds to log test threshold for the 2.7-ft-L stimulus at steady state, are plotted against time. Arrows show moments of decrease and increase of conditioning stimulus level.

Fig. 4
Fig. 4

Results of Experiment 2 for (a) subject MI and (b) subject JN, plotted using the same conventions as in Fig. 3.

Fig. 5
Fig. 5

Comparison of results for JN and MI in Experiment 2, for three values of T of 63, 51, and 40 msec, top to bottom, respectively.

Fig. 6
Fig. 6

Results of Experiment 3 for (a) subject MI and (b) subject JN. Scaling of ordinate is the same as for Fig. 3.

Fig. 7
Fig. 7

Comparison of results for three conditions for subject MI. See text for discussion.