Abstract

Masking is defined as the change in threshold energy eT*(τ) of a test stimulus T induced by a masking stimulus M of energy eM as a function of the relative time τ of occurrence. Masking is maximum when T and M occur simultaneously. A slight decrease in threshold for tests preceding the masking impulse by about 0.1 sec was explained as an alteration in appearance of the subsequent masking flash by a “subthreshold” test flash. Impulse-contrast threshold eT*/eM was investigated for masking impulses M of seven different energies superimposed on five backgrounds B. The increases in test threshold caused by M and by B were found to be independent and a modified Weber’s law (adjusted contrast threshold Cδ*≈0.1) held approximately. This conclusion was supported in a supplementary investigation of Cδ* using a category-rating-scale method.

Impulse masking results were applied to predicting the masking peak at the onset of a long flash by treating the first 60 msec as an impulse. The lowering of thresholds of tests delayed in a long masking flash implied other detection mechanisms (e.g., temporal resolution). Theoretical predictions accounted for 94% and 97% of the variance in two relevant experiments, correctly predicting the effect of masking-flash duration and of background intensity.

In both steady and intermittent light, masking is attributed primarily to fast processes (time constant ≪1 sec) which presumably have a neural rather than a photochemical basis.

© 1965 Optical Society of America

Full Article  |  PDF Article
Related Articles
Rapid Changes in Foveal Sensitivity Resulting from Direct and Indirect Adapting Stimuli*

Robert M. Boynton, William R. Bush, and Jay M. Enoch
J. Opt. Soc. Am. 44(1) 56-60 (1954)

Human Reaction Time During Dark Adaptation*

S. MacLeod and N. R. Bartlett
J. Opt. Soc. Am. 44(5) 374-379 (1954)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription