Abstract

From absorption and photoionization spectra of Ar, Kr, and Xe obtained at 0.5-Å bandwidth, absorption cross sections were computed, and the absolute flux distribution of the Hopfield helium continuum was determined between 600 and 1000 Å. Both total absorption and partial absorption methods were used in deriving flux distributions. Ionization was measured in a parallel-plate ion chamber. In addition, the oscillator strengths for the metastable or autoionized levels lying in the ionization continua were determined.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Watanabe, F. Matsunaga, and R. S. Jackson, J. Quant. Spectry. Radiative Transfer (to be published).
  2. D. M. Packer and C. Lock, J. Opt. Soc. Am. 41, 699 (1951).
    [CrossRef]
  3. K. Watanabe and E. C. Y. Inn, J. Opt. Soc. Am. 43, 32 (1953).
    [CrossRef]
  4. N. Wainfan, W. C. Walker, and G. L. Weissler, J. Appl. Phys. 24, 138 (1953).
    [CrossRef]
  5. J. A. R. Samson, J. Opt. Soc. Am. 54, 6 (1964).
    [CrossRef]
  6. K. Watanabe and F. F. Marmo, J. Chem. Phys. 25, 965 (1956).
    [CrossRef]
  7. G. L. Weissler, J. Quant. Spectry. Radiative Transfer 2, 383 (1962).
    [CrossRef]
  8. R. Huffman, Y. Tanaka, and J. C. Larrabee, J. Opt. Soc. Am. 52, 851 (1962).
    [CrossRef]
  9. H. Beutler, Z. Physik 93, 177 (1935).
    [CrossRef]
  10. P. Lee and G. L. Weissler, Phys. Rev. 99, 540 (1955).
    [CrossRef]
  11. A. Pery-Thorne and W. R. S. Garton, Proc. Phys. Soc. (London) B76, 833 (1960).
    [CrossRef]
  12. R. Huffman, Y. Tanaka, and J. C. Larrabee, J. Chem. Phys. 39, 902 (1963); Appl. Opt. 2, 947 (1963).
    [CrossRef]
  13. P. H. Metzger and G. R. Cook, Bull. Am. Phys. Soc. 8, 476 (1963).
  14. R. P. Madden and K. Codling, Phys. Rev. Letters 10, 516 (1963).
    [CrossRef]
  15. O. P. Rustgi, J. Opt. Soc. Am. 54, 464 (1964).
    [CrossRef]
  16. O. P. Rustgi, E. I. Fisher, and C. H. Fuller, J. Opt. Soc. Am. 54, 745 (1964).
    [CrossRef]
  17. G. R. Cook and P. H. Metzger, J. Chem. Phys. 41, 321 (1964).
    [CrossRef]
  18. O. K. Rice, J. Chem. Phys. 1, 375 (1933).
    [CrossRef]
  19. U. Fano, Phys. Rev. 124, 1866 (1961).
    [CrossRef]
  20. A. Dalgarno, Proc. Roy. Soc. (London) A65, 666 (1952).
  21. J. W. Cooper, Phys. Rev. 128, 681 (1962).
    [CrossRef]

1964 (4)

1963 (3)

R. Huffman, Y. Tanaka, and J. C. Larrabee, J. Chem. Phys. 39, 902 (1963); Appl. Opt. 2, 947 (1963).
[CrossRef]

P. H. Metzger and G. R. Cook, Bull. Am. Phys. Soc. 8, 476 (1963).

R. P. Madden and K. Codling, Phys. Rev. Letters 10, 516 (1963).
[CrossRef]

1962 (3)

J. W. Cooper, Phys. Rev. 128, 681 (1962).
[CrossRef]

G. L. Weissler, J. Quant. Spectry. Radiative Transfer 2, 383 (1962).
[CrossRef]

R. Huffman, Y. Tanaka, and J. C. Larrabee, J. Opt. Soc. Am. 52, 851 (1962).
[CrossRef]

1961 (1)

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

1960 (1)

A. Pery-Thorne and W. R. S. Garton, Proc. Phys. Soc. (London) B76, 833 (1960).
[CrossRef]

1956 (1)

K. Watanabe and F. F. Marmo, J. Chem. Phys. 25, 965 (1956).
[CrossRef]

1955 (1)

P. Lee and G. L. Weissler, Phys. Rev. 99, 540 (1955).
[CrossRef]

1953 (2)

N. Wainfan, W. C. Walker, and G. L. Weissler, J. Appl. Phys. 24, 138 (1953).
[CrossRef]

K. Watanabe and E. C. Y. Inn, J. Opt. Soc. Am. 43, 32 (1953).
[CrossRef]

1952 (1)

A. Dalgarno, Proc. Roy. Soc. (London) A65, 666 (1952).

1951 (1)

1935 (1)

H. Beutler, Z. Physik 93, 177 (1935).
[CrossRef]

1933 (1)

O. K. Rice, J. Chem. Phys. 1, 375 (1933).
[CrossRef]

Beutler, H.

H. Beutler, Z. Physik 93, 177 (1935).
[CrossRef]

Codling, K.

R. P. Madden and K. Codling, Phys. Rev. Letters 10, 516 (1963).
[CrossRef]

Cook, G. R.

G. R. Cook and P. H. Metzger, J. Chem. Phys. 41, 321 (1964).
[CrossRef]

P. H. Metzger and G. R. Cook, Bull. Am. Phys. Soc. 8, 476 (1963).

Cooper, J. W.

J. W. Cooper, Phys. Rev. 128, 681 (1962).
[CrossRef]

Dalgarno, A.

A. Dalgarno, Proc. Roy. Soc. (London) A65, 666 (1952).

Fano, U.

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

Fisher, E. I.

Fuller, C. H.

Garton, W. R. S.

A. Pery-Thorne and W. R. S. Garton, Proc. Phys. Soc. (London) B76, 833 (1960).
[CrossRef]

Huffman, R.

R. Huffman, Y. Tanaka, and J. C. Larrabee, J. Chem. Phys. 39, 902 (1963); Appl. Opt. 2, 947 (1963).
[CrossRef]

R. Huffman, Y. Tanaka, and J. C. Larrabee, J. Opt. Soc. Am. 52, 851 (1962).
[CrossRef]

Inn, E. C. Y.

Jackson, R. S.

K. Watanabe, F. Matsunaga, and R. S. Jackson, J. Quant. Spectry. Radiative Transfer (to be published).

Larrabee, J. C.

R. Huffman, Y. Tanaka, and J. C. Larrabee, J. Chem. Phys. 39, 902 (1963); Appl. Opt. 2, 947 (1963).
[CrossRef]

R. Huffman, Y. Tanaka, and J. C. Larrabee, J. Opt. Soc. Am. 52, 851 (1962).
[CrossRef]

Lee, P.

P. Lee and G. L. Weissler, Phys. Rev. 99, 540 (1955).
[CrossRef]

Lock, C.

Madden, R. P.

R. P. Madden and K. Codling, Phys. Rev. Letters 10, 516 (1963).
[CrossRef]

Marmo, F. F.

K. Watanabe and F. F. Marmo, J. Chem. Phys. 25, 965 (1956).
[CrossRef]

Matsunaga, F.

K. Watanabe, F. Matsunaga, and R. S. Jackson, J. Quant. Spectry. Radiative Transfer (to be published).

Metzger, P. H.

G. R. Cook and P. H. Metzger, J. Chem. Phys. 41, 321 (1964).
[CrossRef]

P. H. Metzger and G. R. Cook, Bull. Am. Phys. Soc. 8, 476 (1963).

Packer, D. M.

Pery-Thorne, A.

A. Pery-Thorne and W. R. S. Garton, Proc. Phys. Soc. (London) B76, 833 (1960).
[CrossRef]

Rice, O. K.

O. K. Rice, J. Chem. Phys. 1, 375 (1933).
[CrossRef]

Rustgi, O. P.

Samson, J. A. R.

Tanaka, Y.

R. Huffman, Y. Tanaka, and J. C. Larrabee, J. Chem. Phys. 39, 902 (1963); Appl. Opt. 2, 947 (1963).
[CrossRef]

R. Huffman, Y. Tanaka, and J. C. Larrabee, J. Opt. Soc. Am. 52, 851 (1962).
[CrossRef]

Wainfan, N.

N. Wainfan, W. C. Walker, and G. L. Weissler, J. Appl. Phys. 24, 138 (1953).
[CrossRef]

Walker, W. C.

N. Wainfan, W. C. Walker, and G. L. Weissler, J. Appl. Phys. 24, 138 (1953).
[CrossRef]

Watanabe, K.

K. Watanabe and F. F. Marmo, J. Chem. Phys. 25, 965 (1956).
[CrossRef]

K. Watanabe and E. C. Y. Inn, J. Opt. Soc. Am. 43, 32 (1953).
[CrossRef]

K. Watanabe, F. Matsunaga, and R. S. Jackson, J. Quant. Spectry. Radiative Transfer (to be published).

Weissler, G. L.

G. L. Weissler, J. Quant. Spectry. Radiative Transfer 2, 383 (1962).
[CrossRef]

P. Lee and G. L. Weissler, Phys. Rev. 99, 540 (1955).
[CrossRef]

N. Wainfan, W. C. Walker, and G. L. Weissler, J. Appl. Phys. 24, 138 (1953).
[CrossRef]

Bull. Am. Phys. Soc. (1)

P. H. Metzger and G. R. Cook, Bull. Am. Phys. Soc. 8, 476 (1963).

J. Appl. Phys. (1)

N. Wainfan, W. C. Walker, and G. L. Weissler, J. Appl. Phys. 24, 138 (1953).
[CrossRef]

J. Chem. Phys. (4)

K. Watanabe and F. F. Marmo, J. Chem. Phys. 25, 965 (1956).
[CrossRef]

R. Huffman, Y. Tanaka, and J. C. Larrabee, J. Chem. Phys. 39, 902 (1963); Appl. Opt. 2, 947 (1963).
[CrossRef]

G. R. Cook and P. H. Metzger, J. Chem. Phys. 41, 321 (1964).
[CrossRef]

O. K. Rice, J. Chem. Phys. 1, 375 (1933).
[CrossRef]

J. Opt. Soc. Am. (6)

J. Quant. Spectry. Radiative Transfer (1)

G. L. Weissler, J. Quant. Spectry. Radiative Transfer 2, 383 (1962).
[CrossRef]

Phys. Rev. (3)

P. Lee and G. L. Weissler, Phys. Rev. 99, 540 (1955).
[CrossRef]

U. Fano, Phys. Rev. 124, 1866 (1961).
[CrossRef]

J. W. Cooper, Phys. Rev. 128, 681 (1962).
[CrossRef]

Phys. Rev. Letters (1)

R. P. Madden and K. Codling, Phys. Rev. Letters 10, 516 (1963).
[CrossRef]

Proc. Phys. Soc. (London) (1)

A. Pery-Thorne and W. R. S. Garton, Proc. Phys. Soc. (London) B76, 833 (1960).
[CrossRef]

Proc. Roy. Soc. (London) (1)

A. Dalgarno, Proc. Roy. Soc. (London) A65, 666 (1952).

Z. Physik (1)

H. Beutler, Z. Physik 93, 177 (1935).
[CrossRef]

Other (1)

K. Watanabe, F. Matsunaga, and R. S. Jackson, J. Quant. Spectry. Radiative Transfer (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Parallel-plate ionization chamber. N0, flux at exit slit. N, flux striking photocathode P after absorption in path length L. Electrometers E1 and E2 measure flux and ionization, respectively.

Fig. 2
Fig. 2

Absorptance [1−exp (−nσL)] vs ionization ig Curve 1: λ=700 Å, N0=4.5×107 photons per sec; curve 2: λ=690 Å, N0=4.1×107 photons per sec; curve 3: λ=680 Å, N0 =3.7×107 photons per sec; curve 4: λ=660 Å, N0=3.2×107 photons per sec; and curve 5: λ = 640 Å, N0 = 2.3×107 photons per sec.

Fig. 3
Fig. 3

Example of absorption in the autoionized region of argon. The plot of ln(I0/I) vs p is linear as predicted by the Beer–Lambert laws.

Fig. 4
Fig. 4

Flux distribution of the Hopfield He continuum in the 1000- to 584-Å region. Circles ⊙, boxes ⊡, and solid triangles ▲ are calibration points taken with Xe, Kr, and Ar, respectively. The absolute photon flux at the exit slit of the monochromator is plotted along the ordinate.

Fig. 5
Fig. 5

Photoionization and absorption coefficients of Ar, Kr, and Xe. Photon wavelength λ and energy E are at the bottom and top of the figure, respectively. The autoionized region between the P 2 0 3 2 and P 2 0 1 2 states are indicated by arrows under brackets. The width of the autoionized region in eV is shown above the brackets. For each gas the wavelength of the onset of absorption is shown.

Fig. 6
Fig. 6

Example of data for Kr. i0Pt, iPt, and ig are proportional to photon intensity at the exit slit, to photon intensity after partial absorption, and to the amount of ionization, respectively. The wavelengths of the P 2 3 2 and P 2 1 2 states are indicated by arrows.

Fig. 7
Fig. 7

Example of data for Ar in the region of autoionization. Levels with m=11 to m=16 are indicated together with the wavelength. The rise of ionization and decrease of absorption of the series limit is clearly evident.

Fig. 8
Fig. 8

Example of data for Kr in the region of autoionization. Indicated are levels with m = 6 to m =15 and some of the wavelengths. Also shown by vertical broken lines are levels with m = 8 and m = 9 showing doublet structure corresponding to excitation of the s electron as well as the d electron. The asymmetry of the line shape is clearly evident in both absorption and ionization.

Fig. 9
Fig. 9

Term diagram of energy levels of the diffuse autoionized states. The absorption transitions for Kr are (4p) 5md1S0(4s)2(4p)6 and (4p)5ms1S0(4s)2(4p)6 for the excitation of one of the 4p electrons to d or s state with running quantum number m. The corresponding transitions for Ar and Xe are shown.

Fig. 10
Fig. 10

Example of data for calculating oscillator strengths f for Ar. Absorption coefficient (cm−1) vs wavenumber (cm−1) in the autoionized region. The broken line indicates the upper limit of the continuum.

Tables (1)

Tables Icon

Table I Measured f and k values for discrete autoionized lines and continuum.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n = N 0 [ 1 - exp ( - n σ L ) ] .
i g = e N 0 [ 1 - exp ( - n σ L ) ] ,
i g = e N 0 .
m + h ν m * M + + e - ,
f = m c 2 n 0 e 2 π ν 1 ν 2 k ( ν ) d ν ,