Abstract

The arc spectrum of silicon has been reinvestigated from 1976 to 12 270 Å by using plane and concave grating spectrographs and Fabry–Perot interferometers. Electrodeless discharge lamps containing silicon–halogen compounds, and a silicon arc operated in argon at reduced pressure, were used to obtain measurements on 395 wavelengths, 192 of them interferometric. The total number of newly observed lines is 179, and the number of new classifications 174. Forty-two new even levels were established, principally from the 3s2 3p np (n = 6, 7) and 3s2 3p nf (n = 5, 6, 7) configurations. With the aid of vacuum-ultraviolet data provided by A. G. Shenstone, 38 new odd levels were found. The interferometric and grating investigation has led to the calculation of 92 provisional Ritz standards between 1580 and 2000 Å with uncertainties of less than 0.002 Å. The new wavelength data have also made possible the identification of 76 previously unidentified solar lines as due to Si i. Nineteen other solar lines have been identified as possibly attributable to Si i. A limit of 65 747.5±0.6 cm−1 has been derived for the Si ii level P212 from the nd and nf level series. This corresponds to an ionization potential of 8.15116±0.00008 V.

© 1965 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Kiess, J. Res. Natl. Bur. Std. U. S. 21, 185 (1938).
    [Crossref]
  2. A. Fowler, Proc. Roy. Soc. (London) A123, 422 (1929).
  3. C. C. Kiess, J. Res. Natl. Bur. Std. (U. S.) 11, 775 (1933) J. C. McLennan and W. W. Shaver, Trans. Roy. Soc. Canada, Sec. III 18, 1 (1924); A. Fowler, Phil. Trans. A225, 36 (1924).
  4. C. E. Moore, Natl. Bur. Std. Circ. No. 467,  1(1949); Natl. Bur. Std. Circ. No. 467 3(1958).
  5. C. E. Moore, Vistas in Astronomy (Pergamon Press, Inc., New York, 1956), Vol. 2, p. 1209.
    [Crossref]
  6. F. S. Tomkins and M. Fred, Spectrochim. Acta 6, 139 (1954).
    [Crossref]
  7. V. Kaufman and K. L. Andrew, J. Opt. Soc. Am. 52, 1223 (1962).
    [Crossref]
  8. V. Kaufman, J. Opt. Soc. Am. 52, 866 (1962).
    [Crossref]
  9. W. F. Meggers and R. W. Stanley, J. Res. Natl. Bur. Std. (U. S.) 61, 95 (1958).
    [Crossref]
  10. K. L. Andrew and K. W. Meissner, J. Opt. Soc. Am 49, 146 (1959).
    [Crossref]
  11. F. S. Tomkins and M. Fred, Appl. Opt. 2, 715 (1963).
    [Crossref]
  12. K. W. Meissner, J. Opt. Soc. Am. 31, 405 (1941).
    [Crossref]
  13. A. G. Shenstone, Proc. Roy. Soc. (London) A261, 154 (1961).
  14. R. D. Cowan and K. L. Andrew, J. Opt. Soc. Am. 55, 502 (1965).
    [Crossref]
  15. The average level purity is determined by averaging the dominant eigenvector components squared for each eigenvalue whose J value occurs more than once in a configuration. If there is only a single level for any J value within a configuration, it is always 100% pure and therefore is not included in the average.
  16. K. B. S. Eriksson, Phys. Rev. 102, 102 (1956).
    [Crossref]
  17. C. E. Moore, J. Opt. Soc. Am. 52, 476 (1962).
  18. El’yashevich and Nikitina, Dokl. Akad. Nauk SSSR 111, 325 (1956) [English transl.: Sov. Phys.—Doklady 1, 649 (1956)].
  19. A. G. Shenstone (private communication).
  20. B. Edlén, Rept. Progr. Phys. 26, 181 (1963).
    [Crossref]
  21. J. R. Holmes and M. E. Hoover, J. Opt. Soc. Am. 52, 247 (1962).
    [Crossref]
  22. S. Ch’en and M. Takeo, Rev. Mod. Phys. 29, 20 (1957).
    [Crossref]

1965 (1)

1963 (2)

1962 (4)

1961 (1)

A. G. Shenstone, Proc. Roy. Soc. (London) A261, 154 (1961).

1959 (1)

K. L. Andrew and K. W. Meissner, J. Opt. Soc. Am 49, 146 (1959).
[Crossref]

1958 (1)

W. F. Meggers and R. W. Stanley, J. Res. Natl. Bur. Std. (U. S.) 61, 95 (1958).
[Crossref]

1957 (1)

S. Ch’en and M. Takeo, Rev. Mod. Phys. 29, 20 (1957).
[Crossref]

1956 (2)

El’yashevich and Nikitina, Dokl. Akad. Nauk SSSR 111, 325 (1956) [English transl.: Sov. Phys.—Doklady 1, 649 (1956)].

K. B. S. Eriksson, Phys. Rev. 102, 102 (1956).
[Crossref]

1954 (1)

F. S. Tomkins and M. Fred, Spectrochim. Acta 6, 139 (1954).
[Crossref]

1949 (1)

C. E. Moore, Natl. Bur. Std. Circ. No. 467,  1(1949); Natl. Bur. Std. Circ. No. 467 3(1958).

1941 (1)

1938 (1)

C. C. Kiess, J. Res. Natl. Bur. Std. U. S. 21, 185 (1938).
[Crossref]

1933 (1)

C. C. Kiess, J. Res. Natl. Bur. Std. (U. S.) 11, 775 (1933) J. C. McLennan and W. W. Shaver, Trans. Roy. Soc. Canada, Sec. III 18, 1 (1924); A. Fowler, Phil. Trans. A225, 36 (1924).

1929 (1)

A. Fowler, Proc. Roy. Soc. (London) A123, 422 (1929).

Andrew, K. L.

Ch’en, S.

S. Ch’en and M. Takeo, Rev. Mod. Phys. 29, 20 (1957).
[Crossref]

Cowan, R. D.

Edlén, B.

B. Edlén, Rept. Progr. Phys. 26, 181 (1963).
[Crossref]

El’yashevich,

El’yashevich and Nikitina, Dokl. Akad. Nauk SSSR 111, 325 (1956) [English transl.: Sov. Phys.—Doklady 1, 649 (1956)].

Eriksson, K. B. S.

K. B. S. Eriksson, Phys. Rev. 102, 102 (1956).
[Crossref]

Fowler, A.

A. Fowler, Proc. Roy. Soc. (London) A123, 422 (1929).

Fred, M.

F. S. Tomkins and M. Fred, Appl. Opt. 2, 715 (1963).
[Crossref]

F. S. Tomkins and M. Fred, Spectrochim. Acta 6, 139 (1954).
[Crossref]

Holmes, J. R.

Hoover, M. E.

Kaufman, V.

Kiess, C. C.

C. C. Kiess, J. Res. Natl. Bur. Std. U. S. 21, 185 (1938).
[Crossref]

C. C. Kiess, J. Res. Natl. Bur. Std. (U. S.) 11, 775 (1933) J. C. McLennan and W. W. Shaver, Trans. Roy. Soc. Canada, Sec. III 18, 1 (1924); A. Fowler, Phil. Trans. A225, 36 (1924).

Meggers, W. F.

W. F. Meggers and R. W. Stanley, J. Res. Natl. Bur. Std. (U. S.) 61, 95 (1958).
[Crossref]

Meissner, K. W.

K. L. Andrew and K. W. Meissner, J. Opt. Soc. Am 49, 146 (1959).
[Crossref]

K. W. Meissner, J. Opt. Soc. Am. 31, 405 (1941).
[Crossref]

Moore, C. E.

C. E. Moore, J. Opt. Soc. Am. 52, 476 (1962).

C. E. Moore, Natl. Bur. Std. Circ. No. 467,  1(1949); Natl. Bur. Std. Circ. No. 467 3(1958).

C. E. Moore, Vistas in Astronomy (Pergamon Press, Inc., New York, 1956), Vol. 2, p. 1209.
[Crossref]

Nikitina,

El’yashevich and Nikitina, Dokl. Akad. Nauk SSSR 111, 325 (1956) [English transl.: Sov. Phys.—Doklady 1, 649 (1956)].

Shenstone, A. G.

A. G. Shenstone, Proc. Roy. Soc. (London) A261, 154 (1961).

A. G. Shenstone (private communication).

Stanley, R. W.

W. F. Meggers and R. W. Stanley, J. Res. Natl. Bur. Std. (U. S.) 61, 95 (1958).
[Crossref]

Takeo, M.

S. Ch’en and M. Takeo, Rev. Mod. Phys. 29, 20 (1957).
[Crossref]

Tomkins, F. S.

F. S. Tomkins and M. Fred, Appl. Opt. 2, 715 (1963).
[Crossref]

F. S. Tomkins and M. Fred, Spectrochim. Acta 6, 139 (1954).
[Crossref]

Appl. Opt. (1)

Dokl. Akad. Nauk SSSR (1)

El’yashevich and Nikitina, Dokl. Akad. Nauk SSSR 111, 325 (1956) [English transl.: Sov. Phys.—Doklady 1, 649 (1956)].

J. Opt. Soc. Am (1)

K. L. Andrew and K. W. Meissner, J. Opt. Soc. Am 49, 146 (1959).
[Crossref]

J. Opt. Soc. Am. (6)

J. Res. Natl. Bur. Std. (U. S.) (2)

W. F. Meggers and R. W. Stanley, J. Res. Natl. Bur. Std. (U. S.) 61, 95 (1958).
[Crossref]

C. C. Kiess, J. Res. Natl. Bur. Std. (U. S.) 11, 775 (1933) J. C. McLennan and W. W. Shaver, Trans. Roy. Soc. Canada, Sec. III 18, 1 (1924); A. Fowler, Phil. Trans. A225, 36 (1924).

J. Res. Natl. Bur. Std. U. S. (1)

C. C. Kiess, J. Res. Natl. Bur. Std. U. S. 21, 185 (1938).
[Crossref]

Natl. Bur. Std. Circ. No. 467 (1)

C. E. Moore, Natl. Bur. Std. Circ. No. 467,  1(1949); Natl. Bur. Std. Circ. No. 467 3(1958).

Phys. Rev. (1)

K. B. S. Eriksson, Phys. Rev. 102, 102 (1956).
[Crossref]

Proc. Roy. Soc. (London) (2)

A. Fowler, Proc. Roy. Soc. (London) A123, 422 (1929).

A. G. Shenstone, Proc. Roy. Soc. (London) A261, 154 (1961).

Rept. Progr. Phys. (1)

B. Edlén, Rept. Progr. Phys. 26, 181 (1963).
[Crossref]

Rev. Mod. Phys. (1)

S. Ch’en and M. Takeo, Rev. Mod. Phys. 29, 20 (1957).
[Crossref]

Spectrochim. Acta (1)

F. S. Tomkins and M. Fred, Spectrochim. Acta 6, 139 (1954).
[Crossref]

Other (3)

The average level purity is determined by averaging the dominant eigenvector components squared for each eigenvalue whose J value occurs more than once in a configuration. If there is only a single level for any J value within a configuration, it is always 100% pure and therefore is not included in the average.

C. E. Moore, Vistas in Astronomy (Pergamon Press, Inc., New York, 1956), Vol. 2, p. 1209.
[Crossref]

A. G. Shenstone (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Quantum defect vs level value for the levels of the 3s23p np configurations. Those levels which go to the lower limit are indicated by inverted triangles and are also connected by dotted lines to an arrow at the top of the figure which points down. Correspondingly, those levels which go to the upper limit are indicated by erect triangles and are connected by dotted lines to an arrow which points up. The level designations are given at the left in LS notation, and at the right in jj notation, as a reminder that the coupling conditions change from LS to jj as n increases. Note the break in the level scale at 16 000 cm−1.

Fig. 2
Fig. 2

Quantum defect vs level value for the levels of the 3s23p nf configurations. See the caption of Fig. 1 for an explanation of the arrows and triangles. jK notation is used to designate the nf levels.

Fig. 3
Fig. 3

Quantum defect vs level value for the levels of the 3s23p ns configurations. See the caption of Fig. 1 for an explanation of the arrows and triangles.

Fig. 4
Fig. 4

Quantum defect vs level value for the levels of the 3s23p nd configurations. See the caption of Fig. 1 for an explanation of the arrows and triangles. Note the position of the perturbing 3s3p3 3P term indicated by the vertical dotted line at about 56 700 cm−1.

Fig. 5
Fig. 5

Distribution and intensity, in the Si–He arc source, of the provisional Ritz standards.

Fig. 6
Fig. 6

Level shift as a function of level value for some of the odd levels of Si i. Curve I is a plot of the chloride source and vuv-data level differences (C–S), curve II of the chloride and iodide–argon source level differences (C–I), and curve III of the chloride and silicon–argon arc source level differences (C–A). The total number of points fitted to curves I, II, and III are 27, 40, and 39, respectively. The error envelope for each curve, which can be constructed by joining the ends of the uncertainty range lines, contains more than 80% of the points to which the curve was drawn.

Fig. 7
Fig. 7

Relative shifts of some of the 4p levels as a function of argon pressure in the silicon–argon arc source.

Tables (6)

Tables Icon

Table I Wavelengths and wavenumbers of Si i lines in the region 1255 to 12 270 Å.

Tables Icon

Table II Predicted terms of Si i.

Tables Icon

Table III Even energy levels of Si i.

Tables Icon

Table IV Odd energy levels of Si i.

Tables Icon

Table V Calculated series limits.

Tables Icon

Table VI Calculated wavelengths of some vacuum ultraviolet lines of Si i.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

λ x ( p x + x ) = λ s ( p s + s ) = 2 t ,
Δ σ ¯ = [ i ( W i Δ σ i ) 2 ] 1 2 / i W i ,
T n = R / [ n - a - b / ( n - a ) 2 - c / ( n - a ) 4 - ] 2
Standard deviation = [ ( deviations ) 2 ( No . of levels - No . of parameters - 1 ) ] 1 2 ,