Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hanbury Brown and R. Q. Twiss, Nature 177, 27 (1956).
    [Crossref]
  2. R. Glauber, Phys. Rev. 131, 2766 (1963).
    [Crossref]
  3. C. Freed and H. Haus, (1964).
  4. A. W. Smith and J. A. Armstrong, J. Opt. Soc. Am. 54, 1394A (1964).
  5. R. H. Dicke, 1963ParisConference on Quantum Electronics, p. 35.
  6. F. Arrechi, 1963ParisConference on Quantum Electronics, p. 547.

1964 (1)

A. W. Smith and J. A. Armstrong, J. Opt. Soc. Am. 54, 1394A (1964).

1963 (1)

R. Glauber, Phys. Rev. 131, 2766 (1963).
[Crossref]

1956 (1)

R. Hanbury Brown and R. Q. Twiss, Nature 177, 27 (1956).
[Crossref]

Armstrong, J. A.

A. W. Smith and J. A. Armstrong, J. Opt. Soc. Am. 54, 1394A (1964).

Arrechi, F.

F. Arrechi, 1963ParisConference on Quantum Electronics, p. 547.

Dicke, R. H.

R. H. Dicke, 1963ParisConference on Quantum Electronics, p. 35.

Freed, C.

C. Freed and H. Haus, (1964).

Glauber, R.

R. Glauber, Phys. Rev. 131, 2766 (1963).
[Crossref]

Hanbury Brown, R.

R. Hanbury Brown and R. Q. Twiss, Nature 177, 27 (1956).
[Crossref]

Haus, H.

C. Freed and H. Haus, (1964).

Smith, A. W.

A. W. Smith and J. A. Armstrong, J. Opt. Soc. Am. 54, 1394A (1964).

Twiss, R. Q.

R. Hanbury Brown and R. Q. Twiss, Nature 177, 27 (1956).
[Crossref]

J. Opt. Soc. Am. (1)

A. W. Smith and J. A. Armstrong, J. Opt. Soc. Am. 54, 1394A (1964).

Nature (1)

R. Hanbury Brown and R. Q. Twiss, Nature 177, 27 (1956).
[Crossref]

Phys. Rev. (1)

R. Glauber, Phys. Rev. 131, 2766 (1963).
[Crossref]

Other (3)

C. Freed and H. Haus, (1964).

R. H. Dicke, 1963ParisConference on Quantum Electronics, p. 35.

F. Arrechi, 1963ParisConference on Quantum Electronics, p. 547.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

The ensemble-averaged mean-square deviation of the photon count, normalized to pure shot noise for a fixed observation time, is shown as a function of photon output of the laser. The critical power w0 can be estimated [see Eq. (1)], but no theory exists at the present time for the precise shape of curve B. Curve A indicates pure shot noise, which is expected if only a single coherent photon state is excited. (It is possible to have several resonator TEM00q modes simultaneously excited and yet still have only a single coherent quantum state. In such a case, there would be definite phase relations among the resonator modes.)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w 0 = h γ ( K N + ) t ( K N + - N - ) exp ( p ( K N + - N - ) c t / ( 1 - r ) - h γ ( K N + ) t ( K N + - N - ) ,